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IPCMS-GEMME
23 rue du Loess, BP 20 Cr
67037 Strasbourg, France

Library of Congress Cataloging-in-Publication Data applied for.

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Electronic structure and physical properties of solids : the uses of
of the LMTO method ; lectures of a workshop held at Mont Saint Odile,
France, October 2 - 5, 1998 / Hugues Dreyssé (ed.). - Berlin ;
Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris
; Singapore ; Tokyo : Springer, 2000
(Lecture notes in physics ; Vol. 535)
ISBN 3-540-67238-9

ISSN 0075-8450
ISBN 3-540-67238-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustra-
tions, recitation, broadcasting, reproduction on microfilm or in any other way, and
storage in data banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer-Verlag. Violations
are liable for prosecution under the German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer publishing group
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Theuse of general descriptive names, registerednames, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by the authors/editor
Cover design: design & production, Heidelberg

Printed on acid-free paper
SPIN: 10720521 55/3144/du - 5 4 3 2 1 0



Preface

In recent years, computational materials science has clearly emerged as an im-
portant field of condensed matter physics. In particular, the development of new
computing facilities has made it possible to study physical phenomena at the
atomic scale by means of ab initio electronic structure methods. Among various
approaches used, the Linear Muffin-Tin Orbitals method (LMTO) proposed in
the seventies by O.K. Andersen has played a key role. In its Atomic Sphere Ap-
proximation (ASA), the LMTO method has been widely used to tackle various
type of problems. In 1984, O.K. Anderson and coworkers introduced a localized
LMTO basis set. This new approach, called Tight-Binding LMTO (TB-LMTO),
has paved the way to an order-N scheme, giving new impetus to the study of
numerous physical properties of systems with large number of atoms.
This book is based on selected contributions presented at a workshop, orga-

nized in October 1998 in the monastery of Mont Saint Odile (near Strasbourg,
France). A large number of scientists involved in the development and the prac-
tice of the LMTO method gathered there for three days. The first part of this
book is devoted to the formalisms for ground and excited states. It starts with
a review, by Andersen and coworkers, of the TB-LMTO method and its genera-
lization. The Schrödinger equation of Nth order in the energy expansion for an
overlapping muffin-tin potential is solved using a minimal basis set. The aim of
this third generation LMTO method is to take a further step beyond the limi-
tations of the popular atomic-sphere approximation. The present approach uses
wave functions which are accurate not only in the muffin-tin spheres but also in
the interstitial region. In the conventional implementations of the LMTO-ASA
method it is difficult to determine the forces on the atoms. For this reason Full-
Potential LMTO approaches have been developed. In this book two different
approaches are described. The first one is proposed by Methfessel and coworkers
and is based on smooth Hankel functions. The use of these special functions
allows the method to provides a good accuracy of the total energy with an al-
most minimal basis set. The second approach proposed by Wills and coworkers
uses a large basis set which can describe multiple principal quantum numbers
within a single fully hybridized basis set. This large basis set allows this method
to determine the excited states to higher energies without the need for cumber-
some multiple energy panel calculations like in the minimal basis set methods.
However, the drawback and limitation of these FP methods remains the huge
computational effort needed, which inhibits calculations of systems with large
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numbers of atoms. To overcome these computational hurdles, Kollar and cowor-
kers presented the so called full-density method, a method halfway between the
ASA and the FP, which combines the simplicity of the former and the accuracy
of the latter. In the initial description of the Density Functional Theory (DFT),
the eigenvalues are Lagrange multipliers, and thus no physical meaning can be
associated with them. However the success of excited states calculations based
on DFT can be understood due to the fact that the Kohn–Sham equations can
be viewed as an approximation to the quasi-particle equations where the self-
energy is local and time independent. Alouani and Wills give the basics and
some applications to the determination of optical properties and x-ray magnetic
dichroism.
One of the main success of the LMTO schemes in the last few years has

been the description of magnetic systems. A fully relativistic formalism and the
applications to spectroscopy are presented by Ebert. The key question of the
magnetic anisotropy of bulk and thin films is addressed by Eriksson and Wills,
illustrating the high level of precision reached, whereas Temmerman and co-
workers present a unified formalism to describe localized and delocalized states,
pointing out the importance of the self-interaction correction. Another spectacu-
lar use of the TB-LMTO method is given by Kudrnovsky and coworkers on the
Interlayer Exchange Coupling (IEC). Ab initio formulations of the IEC between
non-collinearly aligned magnetic slabs lead to results in good agreement with
experiment.
One advantage of the TB-LMTO is its use to describe disordered systems such

as alloys with the precision of ab initio methods. A short review of the TB-LMTO
within the Coherent Potential Approximation (CPA) applied to disordered alloys
and surfaces is given by Turek and coworkers, whereas Abrikosov and coworkers
present a locally self-consistent Green’s function method. This latter order-N
method is particularly interesting for systems with a large number of inequivalent
atoms.
Mathematical and numerical problems are the building blocks of ab initio

methods, and numerical algorithms for solving various parts of the formalism are
of great interest. In particular, the diagonalisation of sparse matrices, which is at
the heart of the TB-LMTO method, by efficient algorithms is highly desirable. In
this respect, Scott has given an introduction to direct methods for the solution
of large-scale linear systems, emphasizing the progress made in the development
of routines which are now available in numerical libraries. The book ends with
two contributions on the determination of the electronic structure in real space:
a real-space derivation of the TB-LMTO method by Spisak and Hafner, and the
venerable semi-empirical tight-binding method by Cornea and Stoeffler.
I would like to thank each of the sixty-seven scientists from seventeen different

countries who make this book possible, especially those who came from far away
countries, like Argentina, Brasil, India, and Japan. The meeting was held over
three days in a lively atmosphere where the most recent progress in the ab initio
methods was presented and where discussions continued well after the talks.



Preface VII

Besides the fourteen invited talks which form the basis of this book, nineteen
shorter presentations offered the opportunity to focus on more precise points.
The “Ab-initio Calculations of Magnetic Properties of Surfaces, Interfaces,

and Multilayers” TMR European network provided the first impulse for this
meeting. The support of the European Science Foundation (ESF) through the
program Ψk allowed the participation of a large number of scientists. Finally, the
local support of the IPCMS (Institut de Physique et Chimie de Strasbourg) was
greatly appreciated. I would also like to thank M. Alouani for constant interest
and I. Galanakis, who struggled and succeeded in finalizing the electronic version
of the book.

Strasbourg, August 1999 Hugues Dreyssé
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D. Spǐsák
Institut für Theoretische Physik
and Center for Computational
Materials Science
Technische Universität Wien
Wiedner Hauptstraße 8-10/136
A-1040 Vienna, Austria
spisak@hal27.cmt.tuwien.ac.at

C. Cornea
Institut de Physique et Chimie des
Matériaux de Strasbourg
Groupe d’Etude des Matériaux
Métalliques
23, rue du Loess
F-67037 Strasbourg, France
Daniel.Stoeffler@ipcms.u-strasbg.fr



Developing the MTO Formalism

O. K. Andersen, T. Saha-Dasgupta, R. W. Tank, C. Arcangeli, O. Jepsen, and
G. Krier

Max-Planck-Institut FKF, D-70569 Stuttgart, FRG,
andersen@and.mpi-stuttgart.mpg.de

Abstract. The TB-LMTO-ASA method is reviewed and generalized to an accurate
and robust TB-NMTO minimal-basis method, which solves Schrödinger’s equation to
Nth order in the energy expansion for an overlapping MT-potential, and which may
include any degree of downfolding. For N = 1, the simple TB-LMTO-ASA formalism is
preserved. For a discrete energy mesh, the NMTO basis set may be given as: χ(N) (r) =
∑

n φ (εn, r) L
(N)
n in terms of kinked partial waves, φ (ε, r) , evaluated on the mesh,

ε0, ..., εN . This basis solves Schrödinger’s equation for the MT-potential to within an
error ∝ (ε − ε0) ... (ε − εN ) . The Lagrange matrix-coefficients, L

(N)
n , as well as the

Hamiltonian and overlap matrices for the NMTO set, have simple expressions in terms
of energy derivatives on the mesh of the Green matrix, defined as the inverse of the
screened KKR matrix. The variationally determined single-electron energies have errors
∝ (ε − ε0)2 ... (ε − εN )2 . A method for obtaining orthonormal NMTO sets is given and
several applications are presented.

1 Overview

Muffin-tin orbitals (MTOs) have been used for a long time in ab initio calcu-
lations of the electronic structure of condensed matter. Over the years, several
MTO-based methods have been devised and further developed. The ultimate aim
is to find a generally applicable electronic-structure method which is accurate
and robust, as well as intelligible.

In order to be intelligible, such a method must employ a small, single-electron
basis of atom-centered, short-ranged orbitals. Moreover, the single-electron Ha-
miltonian must have a simple, analytical form, which relates to a two-center,
orthogonal, tight-binding (TB) Hamiltonian.

In this sense, the conventional linear muffin-tin-orbitals method in the atomic-
spheres approximation (LMTO-ASA) [1,2] is intelligible, because the orbital may
be expressed as:

χRL (rR) = φRL (rR) +
∑
R′L′

φ̇R′L′ (rR′) (HR′L′,RL − ενδR′RδL′L) . (1)

Here, φRL (rR) is the solution, ϕRl (εν , rR)Ylm (r̂R) , at a chosen energy, εν , of
Schrödinger’s differential equation inside the atomic sphere at site R for the
single-particle potential,

∑
R vR (rR) , assumed to be spherically symmetric in-

side that sphere. Moreover, rR ≡ r − R and L ≡ lm. The function ϕRl (ε, r)

H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 3−84, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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thus satisfies the one-dimensional, radial Schrödinger equation

∂2

∂r2 rϕRl (ε, r) = −
[
ε − vR (r) − l (l + 1)

r2

]
rϕRl (ε, r) . (2)

In (1), φ̇RL (r) are the energy-derivative functions, ∂ϕRl (ε, r) /∂ε|εν
Ylm (r̂) .

The radial functions, ϕ and ϕ̇, and also the potential, v, are truncated outside
their own atomic sphere of radius s, and the matrix, H, is constructed in such a
way that the LMTO is continuous and differentiable in all space. Equation (1)
therefore expresses the LMTO at site R and (pseudo) angular momentum L as
the solution of Schrödinger’s equation at that site, with that angular momentum,
and at the chosen energy, plus a ’smoothing cloud’ of energy-derivative functions,
centered mainly at the neighboring sites, and having around these, all possible
angular momenta.

That a set of energy-independent orbitals must have the form (1) in order to
constitute a basis for the solutions Ψi (r) – with energies εi in the neighborhood
of εν – of Schrödinger’s equation for the entire system, is intuitively obvious, be-
cause the corresponding linear combinations,

∑
RL χRL (rR) cRL,i, will be those

which locally, inside each atomic sphere and for each angular momentum, have
the right amount of ϕ̇ – provided mainly by the tails of the neighboring orbitals
– added onto the central orbital’s ϕ. Since by construction each ϕRl (ε, r) is the
correct solution, this right amount is of course εi − εν . In math: since definitions
can be made such that the expansion matrix HR′L′,RL is Hermitian, its eigen-
vectors are the coefficients of the proper linear combinations, and its eigenvalues
are the energies:∑

RL

χRL (rR) cRL,i =
∑
RL

[
φRL (rR) + (εi − εν) φ̇RL (rR)

]
cRL,i

≈
∑
RL

φRL (εi, rR) cRL,i = Ψi (r) . (3)

Hence, H is a 1st-order Hamiltonian, delivering energies and wave functions with
errors proportional to (εi − εν)

2
, to leading order.

First-order energies seldom suffice, and in the conventional LMTO-ASA me-
thod use is made of the variational principle for the Hamiltonian,

H ≡ −∇2 +
∑

R
vR (rR) , (4)

so that errors of order (εi − εν)
2 in the basis set merely give rise to errors of order

(εi − εν)
4 in the energies. With that approach, the energies and eigenvectors are

obtained as solutions of the generalized eigenvalue problem:∑
RL

[〈χR′L′ |H − εν |χRL〉 − (εi − εν) 〈χR′L′ | χRL〉] cRL,i = 0, (5)

for all R′L′. If we now insert (1) in (5), we see that the Hamiltonian and over-
lap matrices are expressed in terms of the 1st-order Hamiltonian, H, plus two
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diagonal matrices with the respective elements〈
φRL | φ̇RL

〉
=

∫ s
0 ϕRl (r) ϕ̇Rl (r) r

2dr,
〈
φ̇RL | φ̇RL

〉
=

∫ s
0 ϕ̇Rl (r)

2
r2dr. (6)

These matrices are diagonal by virtue of the ASA, which approximates integrals
over space by the sum of integrals over atomic spheres. If each partial wave is
normalized to unity in its sphere:

∫ s
0 ϕRl (r)

2
r2dr = 1, then 〈φ | φ〉 is the unit

matrix in the ASA, and the Hamiltonian and overlap matrices entering (5) take
the simple forms:

〈χ |H − εν |χ〉 = (H − εν)
[
1 +

〈
φ | φ̇

〉
(H − εν)

]
(7)

〈χ | χ〉 =
[
1 + (H − εν)

〈
φ̇ | φ

〉] [
1 +

〈
φ | φ̇

〉
(H − εν)

]
+ (H − εν)

[〈
φ̇ | φ̇

〉
−

〈
φ | φ̇

〉2
]
(H − εν) .

Here and in the following we use a vector-matrix notation according to which,
for example χRL (rR) and χRL (rR)

∗ are considered components of respectively
a row-vector, χ (r) , and a column-vector, χ (r)† . The eigenvector, ci, is a column
vector with components cRL,i. Moreover, 1 is the unit matrix, εν is a diagonal
matrix, and H is a Hermitian matrix. Vectors and diagonal matrices are denoted
by lower-case Latin and Greek characters, and matrices by upper-case Latin
characters. Exceptions to this rule are: Y (r̂) , the vector of spherical harmonics,
the site and angular-momentum indices (subscripts) R, L, I, and A, and the
orders (superscripts) L, M, and N. Operators are given in calligraphic, like H,
and an omitted energy argument means that ε = εν .

With the φ (r)’s being orthonormal in the ASA, the LMTO overlap matrix
in (7) is seen to factorize to 1st order, and it is therefore simple to transform to
a set of nearly orthonormal LMTOs:

χ̂ (r) = χ (r)
[
1 +

〈
φ | φ̇

〉
(H − εν)

]−1
(8)

〈χ̂ |H − εν | χ̂〉 ≡ Ĥ − εν =
[
1 + (H − εν)

〈
φ̇ | φ

〉]−1
(H − εν)

= H − εν − (H − εν)
〈
φ̇ | φ

〉
(H − εν) + ...

〈χ̂ | χ̂〉 = 1 +
(
Ĥ − εν

)〈 ˙̂
φ | ˙̂

φ
〉(

Ĥ − εν

)
˙̂
φ (r) ≡ φ̇ (r) − φ (r)

〈
φ | φ̇

〉
.
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Here, the energy-derivative function, ˙̂φ (r) , equals φ̇ (r) , orthogonalized to φ (r) .
Finally, we may transform to a set of orthonormal LMTOs:

χ̌ (r) = χ̂ (r)
[
1 +

(
Ĥ − εν

)〈 ˙̂
φ | ˙̂

φ
〉(

Ĥ − εν

)]−1/2
= (9)

χ̂ (r)
[
1 − 1

2

(
Ĥ − εν

)〈 ˙̂
φ | ˙̂

φ
〉(

Ĥ − εν

)
+ ..

]
〈χ̌ |H − εν | χ̌〉 ≡ Ȟ − εν = Ĥ − εν −
1
2

(
Ĥ − εν

)〈 ˙̂
φ | ˙̂

φ
〉(

Ĥ − εν

)2
− 1

2

(
Ĥ − εν

)2 〈 ˙̂
φ | ˙̂

φ
〉(

Ĥ − εν

)
+ ..

We thus realize that of the Hamiltonians considered, H is of 1st, Ĥ is of 2nd, and
Ȟ is of 3rd order. As the order increases, and the energy window – inside which
the eigenvalues of the Hamiltonian are useful as single-electron energies – widens,
the real-space range of the Hamiltonian increases. For real-space calculations [3–
7], it is therefore important to be able to express a higher-order Hamiltonian as
a power series in a lower-order Hamiltonian like in (8) and (9), because such a
series may be truncated when the energy window is sufficiently wide.

The energy-derivative of the radial function ϕ (ε, r) depends on the energy de-
rivative of its normalization. If we choose to normalize according to:

∫ s
0 ϕ̂ (ε, r)2 r2dr =

1, then it follows that
∫ s
0 ϕ̂ (r) ˙̂ϕ (r) r2dr = 0. Choosing another energy-dependent

normalization: ϕ (ε, r) ≡ ϕ̂ (ε, r) [1 + (ε − εν) o] , specified by a constant o, then
we see that: ϕ̇ (r) = ˙̂ϕ (r)+ϕ (r) o. Changing the energy derivative of the norma-
lization thus adds some ϕ (r) to

.

ϕ̂ (r) and thereby changes the shape of the ’tail
function’ ϕ̇ (r) . Since all LMTOs (1) should remain smooth upon this change,
also H must change, and so must all LMTOs in the set. The diagonal matrix〈
φ | φ̇

〉
, whose elements are the radial overlap integrals: o =

∫ s
0 ϕ (r) ϕ̇ (r) r2dr,

thus determines the LMTO representation, and the first and the last equations
(8) specify the linear transformation between representations. Values of the dia-
gonal matrix

〈
φ | φ̇

〉
exist, which yield short range for the 1st-order Hamiltonian

H and, hence, for the LMTO set (1). Such an H is therefore a two-center TB
Hamiltonian and such an LMTO set is a first-principles TB basis.

In order to obtain an explicit expression forH, one needs to find the spherical-
harmonics expansions about the various sites for a set of smooth MTO envelope
functions. For a MT-potential, which is flat in the interstitial, the envelope fun-
ctions are wave-equation solutions with pure spherical-harmonics character near
the sites. Consistent with the idea behind the ASA – to use ’space-filling spheres’
– is the use of envelope functions with fixed energy, specifically zero, which is a
reasonable approximation for the kinetic energy between the atoms for a valence
state. The envelope functions in the ASA are thus screened multipole potentials,
with the screening specified by a diagonal matrix of screening constants, αRl,
related to the radial overlaps oRl. The expansion of a bare multipole potential
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at site R about a different site R′ is well known:

YL (r̂R)
rl+1
R

∼
∑
R′L′

rl
′
R′YL′ (r̂R′)

Yl′′m′′
(
R̂′−R

)
|R′−R|l′′+1 ∼

∑
R′L′

rl
′
R′YL′ (r̂R′) S0

R′L′,RL .

Here, l′′ ≡ l′ + l and m′′ ≡ m′ − m. With suitable normalizations, the bare
structure matrix, S0, can be made Hermitian. The screened structure matrix is
now related to the bare one through a Dyson equation:

(Sα)−1 =
(
S0)−1 − α, (10)

which may be solved by inversion of the matrix S0 −α−1. This inversion may be
performed in real space, that is in R- rather than in k-representation, provided
that the screening constants take values known from experience to give a short-
ranged Sα.

In the end, it turns out that all ingredients to the LMTO Hamiltonian and
overlap integrals, H,

〈
φ | φ̇

〉
, and

〈
φ̇ | φ̇

〉
, may be obtained from the screened

Korringa-Kohn-Rostoker (KKR) matrix in the ASA:

Kα
R′L′,RL (ε) ≡ pαRl (ε) δR′RδL′L − SαR′L′,RL. (11)

Here, p0 (ε) is a diagonal matrix of potential functions obtained from the radial
logarithmic derivative functions, ∂ {ϕ (ε, s)} ≡ ∂ ln |ϕ (ε, r)| /∂ ln r|s , evaluated
at the MT-radius, and pα (ε) is related to p0 (ε) via the diagonal version of
Equation (10). The results are:

H = εν − K = εν − pṗ−1 + ṗ− 1
2 S ṗ− 1

2 ≡ c + d
1
2 S d

1
2 ,〈

φ | φ̇
〉
=

K̈

2!
=

1
2!

p̈
ṗ
,

〈
φ̇ | φ̇

〉
=

...
K

3!
=

1
3!

...
p
ṗ

, (12)

expressed in terms of the KKR matrix, renormalized to have K̇ = 1 :

K (ε) ≡ K̇− 1
2 K (ε) K̇− 1

2 = p (ε) ṗ−1 − ṗ− 1
2 S ṗ− 1

2 . (13)

This corresponds to the partial-wave normalization:
∫ s
0 ϕ (r)2 r2dr = 1, andK (ε)

is what in the 2nd-generation method [1,2] is denoted −h (ε) , but since the cur-
rent notation identifies matrices by capitals, we cannot use h. The LMTO Hamil-
tonian and overlap matrices are thus expressed solely in terms of the structure
matrix S and the potential functions p (ε) , specifically the diagonal matrices p,
ṗ, p̈, and

...
p . It may be realized that the nearly-orthonormal representation is

generated if the diagonal screening matrix in (10) is set to the value γ, which
makes p̈γ vanish.

For calculations [8–10] which employ the coherent-potential approximation
(CPA) to treat substitutional disorder, it is important to be able to perform
screening transformations of the Green matrix:

Gα (z) ≡ Kα (z)−1 = [pα (z) − Sα]−1
, (14)
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also called the resolvent, or the scattering path operator in multiple scattering
theory [11]. In the 2nd generation MTO formalism, Ga (ε) was denoted gα (ε) .
This screening transformation is:

Gβ (z) = (β − α)
pα (z)
pβ (z)

+
pα (z)
pβ (z)

Gα (z)
pα (z)
pβ (z)

, (15)

and is seen to involve no matrix multiplications, but merely energy-dependent
rescaling of matrix elements. As a transformation between the nearly orthonor-
mal, β=γ, and the short-ranged TB-representation, Eq. (15) has been useful
also in Green-function calculations for extended defects, surfaces, and interfa-
ces [8,10,12–14]. However, calculations which start out from the unperturbed
Green matrices most natural for the problem – namely those obtained from
LMTO band-structure calculations in the nearly orthonormal representation for
the bulk systems – have usually been limited to 2nd-order in z − εν , because
pγ (z) is linear to this order, and because attempts to use 3rd-order expressions

for pγ (z) employing the potential parameter
...
p γ = 3! ṗγ

〈 .

φ̂ |
.

φ̂

〉
, induced false

poles in the Green matrix.
What is not intelligible in the TB-LMTO-ASA method is that the LMTO ex-

pansion (1) must include all L′’s until convergence is reached throughout each
sphere, and all R′’s until space is covered with spheres. This means that the
LMTO-ASA basis is minimal – at most – for elemental, closely packed transi-
tion metals, the case for which it was in fact invented [15]. The supreme com-
putational efficiency of the method soon made self-consistent density-functional
[16] calculations possible, and not only for elemental transition metals, but also
for compounds. In order to treat open structures such as diamond, empty sphe-
res were introduced as a device for describing the repulsive potentials in the
interstices [17]. All of this then, led to misinterpretations of the wave-function
related output of such calculations in terms of the components of the one-center
expansions (1), typically the numbers of s, p, and d electrons on the various
atoms (including in the empty spheres!) and the charge transfers between them.
Absurd statements to the effect that CsCl is basically a neutral compound with
the Cs electron having a bit of s-, more p-, quite some d-, and a bit of f -character
were not uncommon. Many practitioners of the ASA method did not realize that
the role of the MT-spheres is to describe the input potential, rather than the ou-
tput wave-functions. For the latter, the one-center expansions truncated outside
the spheres constitute merely a decomposition which is used in the code for
selfconsistent calculations. The strange Cs electron is therefore little more than
the expansion about the Cs site of the tails of the neighboring Cl p electrons
spilling into the Cs sphere. That latter MT-sphere must of course be chosen to
have about the same size as that of Cl, because only then is the shape of the
Cs+Cl− potential in the bi-partitioned structure well described.

Now, the so-called high partial waves – they are those which are shaped like
rl in the outer part of the sphere where the potential flattens out – do enter
the LMTO expansion (1), but not the eigenvalue problem (5) or the equivalent
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KKR equation:

K (εi) ci = 0, (16)

because they are part of the MTO envelope functions. This property of having
the high-l limit correct is a strength of the MTO method, not shared by for
instance Gaussian orbitals, which are solutions of (2) for a parabolic potential.
There are, however, also other partial waves – like the Cs s-waves, d-waves
in non-transition metal atoms, f -waves in transition-metal atoms, s-waves in
oxygen and fluorine, and in positive alkaline ions, and all partial waves in empty
spheres – which for the problem at hand are judged to be inactive and should
therefore not have corresponding LMTOs in the basis. In order to get rid of
such inactive LMTOs, one must first – by means of (10) or (15) – transform to
a representation in which the inactive partial waves appear only in the ’tails’
(second term of (1)) of the remaining LMTOs; only thereafter, the inactive
LMTOs can be deleted. This down-folding procedure works for the LMTO-ASA
method, but it messes up the connection between the LMTO Hamiltonian (7)-
(13) and the KKR Green-function formalisms (12)-(16), and it is not as efficient
as one would have liked it to be [2]. E.g., the Si valence band cannot be described
with an sp LMTO basis set derived by down-folding of the Si d- as well as all
empty-sphere partial waves [18].

The basic reason for these failures is that the ASA envelopes are chosen to
be independent of energy – in order to avoid energy dependence of the structure
matrix – because this is what forces us to carry out explicitly the integrals
involving all partial waves in all spheres throughout space. What should be done
is to include all inactive waves, ϕI (ε, r) , in energy-dependent MTO-envelopes,
and then to linearize these MTOs to form LMTOs. This has been achieved with
the development of the LMTO method of the 3rd-generation [19,20], and will be
dealt with in the present paper. The reason why energy linearization still works
in a window of useful width, now that the energy dependence is kept throughout
space, is due to the screening of the wave-equation solutions used as envelope
functions [21].

As an extreme example, it was demonstrated in Fig. 7 of Ref. [20] – and
we shall present further results in Fig. 11 below – how with this method one
may pick the orbital of one band, with a particular local symmetry and energy
range, out of a complex of overlapping bands. This goes beyond the construc-
tion of a Wannier function and has relevance for the treatment of correlated
electrons in narrow bands [22,23]. Another example to be treated in the present
paper is the valence and low-lying conduction-band structure of GaAs calculated
with the minimal Ga spd As sp basis [24]. Other examples, not treated in this
paper, concern the calculation of chemical indicators, such as the crystal-orbital-
overlap-projected densities of states (COOPs) [25] for describing chemical pair
bonding. These indicators were originally developed for the empirical Hückel me-
thod where all parameters have been standardized. When one tries to take this
over to an ab initio method, one immediately gets confronted with the problems
of representation. For instance, COOPs will vanish in a basis of orthonormal or-
bitals. Therefore, the COOPs first had to be substituted by COHPs, which are
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Hamiltonian- rather than overlap projections, but still, the LMTO-ASA method
often gave strange results – for the above mentioned reasons [26]. What one has
to do is – through downfolding – to chose the chemically-correct LMTO Hilbert
space and – through screening – choose the chemically correct axes (orbitals) in
this space. Only with such orbitals, does it make sense to compute indicators
[27,28].

A current criterion for an electronic-structure method to be accurate and
robust is that it can be used in ab initio density-functional molecular-dynamics
(DF-MD) calculations [29]. According to this criterion, hardly any existing LMTO
method – and the LMTO-ASA least of all – is accurate and robust.

Most LMTO calculations include non-ASA corrections to the Hamiltonian
and overlap matrices, such as the combined correction for the neglected integrals
over the interstitial region and the neglected high partial waves. This brings in
the first energy derivative of the structure matrix, Ṡ, in a way which makes the
formalism clumsy [2]. The code [30] for the 2nd-generation LMTO method is
useful [31] and quite accurate for calculating energy bands, because it includes
downfolding in addition to the combined correction, as well as an automatic way
of dividing space into MT-spheres, but the underlying formalism is complicated.

There certainly are LMTO methods sufficiently accurate to provide structu-
ral energies and forces within density-functional theory [8,9,34–36,7,38–40], but
their basis functions are defined with respect to MT-potentials which do not
overlap. As a consequence, in order to describe adequately the correspondingly
large interstitial region, these LMTO sets must include extra degrees of freedom,
such as LMTOs centered at interstitial sites and LMTOs with more than one
radial quantum number. The latter include LMTOs with tails of different kine-
tic energies (multiple kappa -sets) and LMTOs for semi-core states. Moreover,
these methods usually do not employ short-ranged representations. Finally, since
a non-overlapping MT potential is a poor approximation to the self-consistent
potential, these methods are forced to include the matrix elements of the full
potential. Existing full-potential methods are thus set up to provide final, nu-
merical results at relatively low cost, but since they are complicated, they have
sofar lacked the robustness needed for DF-MD, and their formalisms provide
little insight to the physics and chemistry of the problem.

One of the early full-potential MTO methods did fold down extra orbitals
and furthermore contained a scheme by which the matrix elements of the full
potential could be efficiently approximated by integrals in overlapping spheres
[38]. The formalism however remained complicated, and the method apparently
never took off. A decade later, it was shown [21,20] that the MT-potential, which
defines the MTOs – and to which the Hamiltonian (4) refers – may in fact have
some overlap: If one solves the exact KKR equations [41] with phase shifts calcu-
lated for MT-wells which overlap, then the resulting wave function is the one for
the superposition of these MT-wells, plus an error of 2nd order in the potential-
overlap. This proof will be repeated in Eq. (28) of the present paper, and in
Figs. 14 and 13 we shall supplement the demonstration in Ref. [20] that this
may be exploited to make the kind of extra LMTOs mentioned above super-
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fluous, provided that the MTO-envelopes have the proper energy dependence,
that is, provided that 3rd generation LMTOs are used. Presently we can handle
MT-potentials with up to ∼60% radial overlap

(
sR + sR′ < 1.6

∣∣R − R′∣∣), and
it seems as if such potentials, with the MT-wells centered exclusively on the
atoms, are sufficiently realistic that we only need the minimal LMTO set de-
fined therefrom [20,42]. It may even be that such fat MT-potentials, without
full-potential corrections to the Hamiltonian matrix, will yield output charge
densities which, when used in connection with the Hohenberg-Kohn variational
principle for the total energy [16], will yield good structural energies [43]. Hence,
we are getting rid of one of the major obstacles to LMTO DF-MD calculations,
the empty spheres.

Soon after the development of the TB-LMTO-ASA method, it was realized
[44] that the full charge density produced with this method – for cases where
atomic and interstitial MT-spheres fill space well – is so accurate, that it should
suffice for the calculation of total energies, provided that this charge density is
used in connection with a variational principle. However, it took ten years before
the first successful implementation was published [45]. The problem is as follows:
The charge density, ρ (r) =

∑occ
i |Ψi (r)| , is most simply obtained in the form of

one-center expansions:

ρ (r) =
∑
R

∑
LL′

∫
occ

φRL (z, rR) ImGRL,RL′ (z) φRL′ (z, rR)
∗ dz

π
, (17)

where G (z) ≡ K (z)−1
, as can be seen from (1) and (3), but these expansions

have terribly bad L-convergence in the region between the atoms and cannot
even be used to plot the charge-density in that region. That was made possible
by the transformation to a short-ranged representation, because one could now
use:

ρ (r) =
∑
RL

∑
R′L′

χRL (rR)
[∫

occ

ImGRL,R′L′ (z)
dz

π

]
χR′L′ (rR′)∗ , (18)

where the L-sums only run over active values, and where the double-sum over
sites converges fast. Nevertheless, to compute a value of χRL (r) with r far away
from a site, one must evaluate the LMTO envelope function, which is a superpo-
sition of the bare ones, YL (r̂R) /rl+1

R , and this means that (18) actually contains
a 4-double summation over sites. At that time, this appeared to make the eva-
luation of ρ (r) at a sufficient number of interstitial points too time-consuming
for DF-MD, although the full charge density from (18) was used routinely for
plotting the charge-density, the electron-localization function [46], a.s.o. In order
to evaluate the total energy, the full charge density must also be expressed in
a form practical for solving the Poisson equation. If one insists on a real-space
method, then fast Fourier transformation is not an option. In Fig. 12 of the
present paper, we shall present results of a real-space scheme [47,48] used in
connection with 3rd-generation LMTOs for the phase diagram of Si [49]. This
scheme is presently not a full-potential, but a full charge-density scheme, and
the calculation of inter-atomic forces has still not been implemented.
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With 3rd generation LMTOs [19,20], the simple ASA expressions (1)-(18) still
hold, provided that φ (ε, r) is suitably redefined, and that K (ε) is substituted by
the proper screened KKR matrix whose structure matrix depends on energy. The
LMTO Hamiltonian and overlap matrices are given in terms of K, and its first
three energy derivatives, K̇, K̈, and

...

K, which are not diagonal. Downfolding,
the interstitial region, and potential-overlap to first order are now all included
in this simple ASA-like formalism [1]. In due course, we thus hope to be able
to perform DF-MD calculations with an electronic Hamiltonian which is little
more complicated than (7), (8), or (9).

A final problem with the LMTO basis is that even with the conventional
spd-basis and space-filling spheres, the LMTO set is insufficient for cases where
semi-core states and excited states must be described by one minimal basis set,
and in one energy panel. This problem becomes even more acute in the 3rd-
generation method where, due to the proper treatment of the interstitial region,
the expansion energy εν must be global, that is, εν is now the unit matrix
times εν , rather than a diagonal matrix with elements ενRlδRR′δLL′ . The same
problem was met when attempting to apply the formally elegant relativistic,
spin-polarized LMTO method of Ref. [50] to narrow, spin-orbit split f -bands.
Finally, as MT-spheres get larger, and as more partial waves are being folded
into the MTO envelopes, the energy window inside which the LMTO basis gives
accurate results shrinks. This means, that the 3rd-generation LMTO method
described in [20] may not be sufficiently robust.

The idea emerging from the LMTO construction (1) seems to be: Divide space
into local regions inside which Schrödinger’s equation separates due to spherical
symmetry and which are so small that the energy dependence of the radial
functions is weak over the energy range of interest. Then expand this energy
dependence in a Taylor series to first order around the energy εν at the center
of interest: φ (ε, r) ≈ φ (r) + (ε − εν) φ̇ (r) . Finally, substitute the energy by a
Hamiltonian to obtain the energy-independent LMTO. The question therefore
arises (Fig. 1): Can we develop a more general, polynomial MTO scheme of
degree N, which allows us to use an Nth-order Taylor series or – more generally
– allows us to use a mesh of N + 1 discrete energy points, and thereby obtain
good results over a wider energy range, without increasing the size of the basis
set ? Such an NMTO scheme has recently been developed [51] and shown to be
very powerful [24]. We shall preview it in the present paper.

Most aspects of the 3rd-generation LMTO method have been dealt with in
a set of lecture notes [19] and a recent review [20]. Here, we shall try to avoid
repetition but, nevertheless, give a self-contained description of two selected
aspects of the new method: the basic concepts and the new polynomial NMTO
scheme, to be presented here for the first time.

We first explain (Sect. 2) what the functions φ (ε, r) actually are in the 3rd-
generation formalism. This we do using conventional notation in terms of sphe-
rical Bessel functions and phase shifts – like in Ref. [21] – and only later, we
renormalize to the notation used in Refs. [19] and [20]. It turns out that the bare
φ’s are the energy-dependent MTOs of the 1st generation [52]. The screened φ’s



Developing the MTO Formalism 13

ν ε

Taylor

ε

r)Φ(ε, 
Lagrange

ε ε1 ε ε

r)

2

Φ(ε, 

0

Fig. 1. Quadratic approximation to the energy dependence of a partial wave for a
condensed (Taylor) and a discrete (Lagrange) mesh.

are the screened, energy-dependent MTOs of the 2nd generation [21], with the
proviso that κ2 ≡ ε. This proviso – together with truncations of the screening
divergencies at the sites, inside the so-called screening spheres – is what makes
the screened φ’s equal to the so-called unitary [19] or kinked [20] partial waves
in the formalism of the 3rd generation. We then derive the screened KKR equati-
ons and repeat the proof from Refs. [21] and [20] that overlapping MT-potentials
are treated correctly to leading (1st) order in the potential overlap. Towards the
end of this first section, we introduce the so-called contracted Green function
φ (ε, r)G (ε) , which will play a crucial role in the development of the polynomial
NMTO scheme, and we derive the 3rd-generation version of the scaling relation
(15) for screening the Green function.

In Sect. 3 we show how to get rid of the energy dependence of the kinked-
partial wave set: We first introduce a set of energy-dependent NMTOs, χ(N) (ε, r) ,
which – like the φ (ε, r) set – spans the solutions of Schrödinger’s equation for
the chosen MT-potential, and whose contracted Green function, χ(N) (ε, r)G (ε) ,
differs from φ (ε, r)G (ε) by a function which is analytical in energy. Like in clas-
sical polynomial approximations, we choose a mesh of arbitrarily spaced energies,
ε0, ..., εN , and subsequently adjust the analytical function in such a way that,
χ(N) (ε0, r) = ... = χ(N) (εN , r) . The latter then, constitutes the set of energy-
independent NMTOs. The 0th-order set, χ(0) (r) , is seen to be the set of kinked
partial waves, φ (ε0, r) , at the energy ε0, and the 1st-order set, χ(1) (r) , to be
the set of tangent or chord-LMTOs – depending on whether the mesh is conden-
sed or discrete. For the case of a condensed mesh – which is the simplest – the
matrices, which substitute for the energies in the Taylor series (1) – generalized
to Nth order – turn out to be:

E(M) − εν =

(M−1)
G

(M − 1)!

 (M)
G

M !


−1

, for 1 ≤ M ≤ N, (19)
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in terms of the Mth and the (M − 1)st energy derivatives of the Green matrix.
Moreover, the expressions for the Hamiltonian and overlap matrices are:

〈
χ(N) |H − εν |χ(N)

〉
= −

 (N)
G

N !


−1

(2N)
G

(2N)!

 (N)
G

N !


−1

, (20)

〈
χ(N) | χ(N)

〉
= −

 (N)
G

N !


−1

(2N+1)
G

(2N + 1)!

 (N)
G

N !


−1

,

which, for N = 1, are easily seen to reduce to (7) upon insertion of (12). In
retrospect, it is convenient that these basic NMTO results are expressed in terms
of energy derivatives of the Green matrix G (ε) – rather than in terms of those
of its inverse, K (ε), as we are used to from the LMTO-ASA method (12) –
because if we imagine generalizing (1) to Nth order and using it to form the
Hamiltonian and overlap matrices like in (7), then each matrix will consist of
N2 terms, among which a number of relations can be shown to exist. We also
realize, that the problem mentioned above about using Green matrices beyond
2nd order in z − εν , is solved by using – instead of G (z) – the NMTO Green
function:

〈
χ(N) |z − H|χ(N)

〉−1
=

(N)
G

N !

 (2N)
G

(2N)!
− (z − εν)

(2N+1)
G

(2N + 1)


−1

(N)
G

N !
, (21)

which equals G (z) to (2N + 1)st order. This Green function has the additional
advantage of allowing for a simple treatment of non-MT perturbations. We admit
that this route to energy-independent MTO basis sets has little in common with
the twisted path we cut the first time, but once found, it is easy to accept and
understand the results – which are simple.

In practice, it is cumbersome to differentiate a KKR matrix – not to speak of
a Green matrix – many times with respect to energy. Hence, one uses a discrete
energy mesh. With that, the derivatives in (19) and the pre- and post factors
in (20) and (21) turn out to be divided differences, while those at the centers
of (20) turn out to be the highest derivative of that approximating polynomial
which is fitted not only to the values of G (ε) at the mesh points, but also to its
slopes. Hence, they are related to classical Hermite interpolation [53].

In both Sections 2 and 3, special attention is paid to the so-called triple-
valuedness, because this was not previously explained in any detail, but has
turned out to be crucial for the further developments and will be even more so
when we come to evaluate the inter-atomic forces. A related aspect is the fact
that a screening transformation in the formalism of the 3rd-generation is linear
as regards the envelope functions, but non-linear as regards the NMTOs. This
means, that changing the screening, changes the NMTO Hilbert space. This was
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not the case for 2nd-generation LMTOs. This is the reason why we took care to
denote the nearly-orthonormal and orthonormal LMTO sets arrived at by the
linear transformations (8) and (9) by respectively χ̂ and χ̌, rather than by χγ

and χ⊥, as in the 2nd-generation LMTO scheme, where screening transformati-
ons were linear and denoted by superscripts. Screening transformations like (10)
and (15) still hold for the 3rd-generation structure- and Green-matrices, but the
partial waves providing the spatial factors of the Green function (see(17)) are
different : they have tails extending into the interstitial region. A tail is attached
continuously, but with a kink, at the screening sphere, which is concentric with,
but smaller than, its own MT-sphere, and the resulting kinked partial wave, or
0th-order energy-dependent MTO, is – for the purpose of evaluating its pro-
perties in a simple, approximate way – triple-valued in the shell between these
two spheres. The radii, aRL, define the screening and determine the shape of the
MTO envelopes. Now, for a superposition of kinked partial waves given by a so-
lution of the KKR equations (16), the kinks and the triple-valuedness cancel, but
for a single NMTO, a triple-valuedness of order (r − a)2N+1 (εi − ε0) ... (εi − εN )
– which is the same as the error caused by the energy interpolation – remains.
For this reason: The smaller the screening radii – i.e. the weaker the screening –
the smaller the energy window inside which an energy-independent NMTO set
gives good results. The extreme case is the bare (a → 0) N = 0 set, which is
the set of 1st-generation MTOs [52], but defined without freezing the energy de-
pendence outside the central MT-sphere. The tail-cancellation condition for this
set leads to the original KKR equations [41], which – we know – must be solved
energy-by-energy, that is, the energy window can be very narrow, depending on
the application. Specifically, for free electrons the width is zero.

At the end of Sect. 3, we demonstrate the power of the new NMTO methods
by applying the differential and discrete LMTO, QMTO, and CMTO variational
methods to the valence and conduction-band structure of GaAs using a minimal
Ga spd As sp basis, and to the conduction band of CaCuO2 using only one
orbital, all others being removed by massive downfolding [24]. We also give simple
expressions for the charge density and show the total energy as a function of
volume for the various crystalline phases of Si calculated with the full-charge,
differential LMTO method [47–49]. Finally, numerical results are presented for
the error of the valence-band energy of diamond-structured Si – as a function of
the potential overlap – obtained from LMTOs constructed for a potential whose
MT-wells are centered exclusively on the atoms. In addition, results of a scheme
which corrects for the error of 2nd order in the overlap will be presented [42].

In Sect. 4 we show that energy-dependent, linear transformations of the set
of kinked partial waves – such as a normalization – merely leads to similarity
transformations among the NMTO basis functions and, hence, does not change
the Hilbert space spanned by the NMTO set.

This is exploited in Sect. 5 to generate nearly orthonormal basis sets, χ̂(N) (r) ,
for which the energy matrices defined in (19) become Hermitian, Hamiltonian
matrices, Ĥ(M). We also show how to generate orthonormal sets, χ̌(N) (r) , of
general order, and we demonstrate by the example of the minimal MTO set
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for GaAs that this technique works numerically efficiently – at least up to and
including N = 3. This development of orthonormal basis sets should be impor-
tant e.g. for the construction of correlated, multi-orbital Hamiltonians for real
materials [23,54].

In the last Sect. 6 we show explicitly how – for N = 1 and a condensed mesh
– the general, nearly-orthonormal NMTO formalism reduces to the simple ASA
formalism of the present Overview.

In the Appendix we have derived those parts of the classical formalism for
polynomial approximation – Lagrange, Newton, and Hermite interpolation –
needed for the development of the NMTO method for discrete meshes [53].

2 Kinked Partial Waves

In this section we shall define 0th-order energy-dependent MTOs and show that
linear combinations can be formed which solve Schrödinger’s equation for the
MT-potential used to construct the MTOs. The coefficients of these linear com-
binations are the solutions of the (screened) KKR equations. By renormalization
and truncation of the irregular parts of the screened MTOs inside appropriately
defined screening spheres, these 0th-order energy-dependent MTOs become the
kinked partial waves of the 3rd generation.

If we continue the regular solution ϕRl (ε, r) of the radial Schrödinger equa-
tion (2) for the single potential well, vR (r) , smoothly outside that well, it be-
comes:

ϕRl (ε, r) = nl (κr) − jl (κr) cot ηRl (ε) ≡ ϕ◦
Rl (ε, r) , for r > sR, (22)

in terms of the spherical Bessel and Neumann functions, jl (κr) and nl (κr) ,
which are regular respectively at the origin and at infinity, and a phase shift
defined by:

cot η (ε) =
n (κs)
j (κs)

∂ ln |ϕ (ε, r)| /∂ ln r|s − ∂ ln |n (κr)| /∂ ln r|s
∂ ln |ϕ (ε, r)| /∂ ln r|s − ∂ ln |j (κr)| /∂ ln r|s

.

In the latter expression, we have dropped the subscripts. Note that we no longer
distinguish between ’inside’ and ’outside’ kinetic energies, ε − v (r) and κ2 ≡
ε−Vmtz, and that we have returned to the common practice of setting Vmtz ≡ 0.
If the energy is negative, nl (κr) denotes a spherical, exponentially decreasing
Hankel function. Note also that – unlike in the ASA – the radial function is not
truncated outside its MT-sphere, and is not normalized to unity inside. In fact,
we shall meet three different normalizations throughout the bulk of this paper,
and (22) is the first.
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Fig. 2. Bare Si p MTO according to Eq.(23)

2.1 Bare MTOs

The bare, energy-dependent muffin-tin orbital (MTO) remains the one of the
1st generation [52]:

φRL (ε, r) ≡ YL (r̂) [ϕRl (ε, r) + jl (κr) cot ηRl (ε)]

= YL (r̂)
{
ϕRl (ε, r) + jl (κr) cot ηRl (ε) for r ≤ sR
nl (κr) for r > sR

= YL (r̂) [ϕRl (ε, r) − ϕ◦
Rl (ε, r) + nl (κr)] , (23)

and is seen to have pure angular momentum and to be regular in all space.
The reason for denoting this 0th-order MTO φ (ε, r) , rather than χ(N=0) (ε, r) ,
should become clear later.

In Fig. 2 we show the radial part of this MTO for a Si p-orbital, a MT-sphere
which is so large that it reaches 3/4 the distance to the next site in the diamond
lattice, and an energy in the valence-band, which – in this case of a large MT-
sphere – is slightly negative (see Fig. 11 in Ref. [20]). The full line shows the MTO
as defined in (23), while the various broken lines show it ’the 3-fold way’: The
radial Schrödinger equation for the potential v (r) is integrated outwards, from
the origin to the MT radius, s, yielding the regular solution, ϕ (ε, r) , shown by
the dot-dashed curve. At s, the integration is continued with reversed direction
and with the potential substituted by the flat potential, whose value is defined
as the zero of energy. This inwards integration results in the radial function ’seen
from the outside of the atom’, ϕ◦ (ε, r) , shown by the dotted curve. The inwards
integration is continued to the origin, where ϕ◦ (ε, r) joins the ’outgoing’ solution
for the flat potential, that is the one which is regular at infinity: n (κr) . The
latter is the envelope function for the bare MTO.
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As usual, the envelope-function for the MTO centered at R may be expanded
in spherical-harmonics about another site R′ (�= R):

κnl (κrR)YL (r̂R) =
∑
L′

jl′ (κrR′)YL′ (r̂R′)BR′L′,RL (ε) ,

where the expansion coefficients form the Hermitian KKR structure matrix:

BR′L′,RL (ε) ≡
∑
l”

4π i−l+l
′−l′′CLL′l′′ κnl′′

(
κ
∣∣R − R′∣∣)Y ∗

l′′,m′′

(
R̂ − R′

)
(24)

as conventionally [41] defined, albeit in R-space. The spherical harmonics are
as defined by Condon and Shortley, m′′ ≡ m′ − m, the summation runs over
l′′ = |l′ − l| , |l′ − l| + 2, ..., l′ + l, and i−l+l

′−l′′ is real, because CLL′L′′ ≡∫
YL(r̂)Y ∗

L′(r̂)YL′′(r̂)dr̂.
If for the on-site elements of B (ε) , we define: BRL,RL′ (ε) ≡ 0, and use

the notation: fL (ε, rR) ≡ fl (κrR)YL (r̂R) , as well as the vector-matrix nota-
tion introduced in connection with (7), we may express the spherical-harmonics
expansion of the bare envelope about any site symbolically as:

κn (ε, r) = j (ε, r)B (ε) + κn (ε, r) . (25)

If we now form a linear combination,
∑

RL φRL (ε, rR) cRL, of energy-dependent
MTOs (23), and require that it be a solution of Schrödinger’s equation, then the
condition is that, inside any MT-sphere (R′) and for any angular momentum
(L′) , the contributions from the tails should cancel the jl′ (κr) cot ηR′l′ (ε)-term
from their own MTO, φR′L′ (ε, rR′), thus leaving behind the term ϕR′l′ (ε, r) ,
which is a solution by construction. This gives rise to the original KKR equations
[41]: ∑

RL

[BR′L′,RL (εi) + κ cot ηRl (εi) δR′RδL′L] cRL,i

≡
∑
RL

KR′L′,RL (εi) cRL,i = 0, (26)

which have non-zero solutions, cRL,i, for those energies, εi, where the determi-
nant of the KKR matrix vanishes.

With those equations satisfied, the wave function is

∑
RL

φRL (εi, rR) cRL,i =
∞∑
l′=0

l′∑
m′=−l′

ϕR′l′ (εi, rR′)YL′ (r̂R′) cR′L′,i + (27)

∑
R �=R′

∑
L

[ϕRl (εi, rR) − ϕ◦
Rl (εi, rR)]YL (r̂R) cRL,i

near site R′. Since according to (22) the function ϕ − ϕ◦ vanishes outside its
own MT-sphere, the terms in the second line vanish for a non-overlapping MT-
potential so that, in this case, (27) solves Schrödinger’s equation exactly. If



Developing the MTO Formalism 19

the potential from a neighboring site (R) overlaps the central site (R′), then
ϕRL − ϕ◦

RL tongues stick into the MT-sphere at R′. The radial part of such a
tongue is 1

2 (sR − rR)
2
vR (sR)ϕRL (sR) , to lowest order in sR − rR, as may be

seen from the radial Schrödinger equation (2). Let us now operate on the smooth
function Ψi (r) ≡

∑
RL φRL (εi, rR) cRL,i , of which (27) is the expansion around

site R′, with H − εi as given by (4) to find the error:

(H − εi)Ψi (r) =∑
R′

vR′ (rR′)
∑
R �=R′

∑
L

[ϕRl (εi, rR) − ϕ◦
Rl (εi, rR)]YL (r̂R) cRL,i (28)

∼ 1
2

pairs∑
RR′

vR′ (sR′)
[
(sR′ − rR′)2 + (sR − rR)

2
]
vR (sR)Ψi (r) .

This shows that the wave function (27) solves Schrödinger’s equation for the
superposition of MT-wells to within an error, which is of second order in the
potential overlap [21,20].

2.2 Screened MTOs

Screening is the characteristic of 2nd-generation MTOs and was first discovered
as the transformation (8) to a nearly-orthonormal representation, in which the
Hamiltonian is of second order [55,56]. Shortly thereafter it was realized that
there exists a whole set of screening transformations which may be used to make
the orbitals short ranged, so that the structure matrix may be generated in real
space. It was also realized that the screening transformation could be used to
downfold inactive channels and, hence, to produce minimal basis sets [1,18,44].
These applications were all for the ASA with κ2=0. Only long time after [21],
did it become clear that screening would work for positive energies as well, and
at that time a fourth virtue of screening became clear, namely, that sceening
the range of the orbitals, simultaneously reduces their energy dependence to the
extent that the full energy dependence may be kept in the interstitial region, thus
making the κ2=0-part of the ASA superfluous. Most of this was shown in the last
paper on the 2nd-generation formalism [21]. Nevertheless, this paper was unable
to devise a generally useful recipe for choosing the energy-dependent screening
constants, it failed to realize that screening allows the return to: κ2=ε, and for
those reasons it missed the elegant energy-linearization of the MTOs achieved
by the 3rd generation.

The screened envelopes of the 2nd-generation method are linear superpositi-
ons,

nα (ε, r) ≡ n (ε, r)Sα (ε) , (29)

of the envelope functions, n (ε, r) , with the property that the spherical-harmonics
expansions of the set of screened envelopes be:

κn (ε, r)Sα (ε) ≡ κnα (ε, r) = jα (ε, r)Bα (ε) + κn (ε, r) , (30)
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which are (25) with the substitutions:

jl (κr) → jαRlm (ε, r) ≡ jl (κr) − nl (κr) tanαRlm (ε) , (31)

and: B (ε) → Bα (ε) , which will be determined below. In contrast to its bare
counterpart, a screened envelope does not have pure angular momentum, i.e.,
cannot be factorized as a radial function times a spherical harmonics, and it
depends explicitly on its surroundings. The background phase shifts α (ε) – which
may even depend on m (see for instance Fig. 11) – specify the shapes of the
screened envelopes. Whereas the bare envelopes are regular in all space – except
at their own site where they diverge like Ylm (r̂) /rl+1 – the screened envelopes
diverge at any site where there is a finite background phase shift in at least one
L-channel.

Note that only in the Overview did we use ASA κ2=0-notation with Greek
letters denoting screening constants and Sα the structure matrix. In the bulk
of the present paper, we use Greek letters to denote background phase shifts,
and Bα and Sα to denote respectively the structure matrix and the screening
transformation.

We now find the screened structure matrix and the transformation matrix by
expanding also the bare envelope on the left hand side of (30) by means of (25).
Comparisons of the coefficients to κnL′ (ε, rR′) and jL′ (ε, rR′) yield respectively:

Sα (ε) = 1 − tanα (ε)
κ

Bα (ε) , and : Bα (ε) = B (ε)Sα (ε) (32)

with the quantities regarded as matrices, e.g. κ−1 tanα is considered a diagonal
matrix with elements κ−1 tanαRL δRR′δLL′ . As a result of (32):

Bα (ε)−1 = B (ε)−1 +
tanα (ε)

κ
, (33)

which shows that, like the bare structure matrix, also the screened one is Her-
mitian. In contrast to the bare structure matrix, the screened one has non-
vanishing on-site elements. For background phase shifts known to give a short-
ranged Bα (ε) , the inversion of the matrix B (ε) + κ cotα (ε) , implied by (33),
may be performed in real space, although the bare structure matrix is long-
ranged. Eq. (33) is the κ2=ε equivalent of the ASA ’Dyson equation’ (10).

For the inactive channels (RL ≡ I) , we choose the background phase shifts
to be equal to the real phase shifts:

αI (ε) ≡ ηI (ε) (34)

so that for these channels,

jαI (ε, r) = jI (κr) − nI (κr) tan ηI (ε) = −ϕ◦
I (ε, r) tan ηI (ε) .

That is, we shape the set of screened envelope functions in such a way that, for
the inactive channels, the radial functions, ϕ◦

I (ε, r) , may be substituted smoothly
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by the regular solutions, ϕI (ε, r) , of the radial Schrödinger equation. This is
what we call downfolding. This substitution makes the screened envelopes be-
come the so-called screened spherical waves, ψ, of the 3rd-generation method.
Only the screened spherical waves corresponding to the remaining, so-called ac-
tive channels (RL = A) will be used to construct the MTO; they are:

ψα
RL (ε, rR) ≡ nαRL (ε, rR) + (35)∑
I

[ϕ◦
I (ε, rR′) − ϕI (ε, rR′)]

tan ηI (ε)
κ

YI (r̂R′)Bα
I,RL (ε) ,

which – in contrast to nαRL (ε, rR) – are regular in all inactive channels, albeit
irregular in the active channels. In (35), I ≡ R′L′. Below, we shall choose to
truncate the active channels inside their screening spheres. Due to the augmen-
tation (substitution), the screened spherical waves do not transform linearly like
(29).

For the partial waves of high l, the phase shifts vanish due to the dominance
of the centrifugal term over the potential term in the radial Schrödinger equation
(2). As a consequence, the matrices involved in the Dyson equation (33) – whose
indices run over all active as well as inactive channels – truncate above a certain
l of about 3 – 4.

Before specifying our choice of background phase shifts for the active chan-
nels, let us define the energy-dependent, screened MTO analogous to the third
equation (23) as the (augmented) envelope function, plus a term proportional
to the function ϕ − ϕ◦, which vanishes (quadratically) outside the central MT-
sphere and has pure angular-momentum character. That is:

φαRL (ε, rR) ≡ YL (r̂R) [ϕRl (ε, rR) − ϕ◦
Rl (ε, rR)]

tan ηRl (ε)
tan ηαRL (ε)

+ ψα
RL (ε, rR)

≡ YL (r̂R) [ϕαRl (ε, rR) − ϕ◦α
Rl (ε, rR)] + ψα

RL (ε, rR) (36)

and RL ∈ A. Here, the coefficient to ϕ − ϕ◦ has been chosen in such a way
that, in its own channel and outside any other MT-sphere, the screened MTO is
ϕα + jα cot ηα plus a term from the diagonal element of the screened structure
matrix.

To check this, we project onto the ’eigen-channel,’ making use of (35), (30),
(22), and (31), and neglecting any contribution from ϕI (ε, rR′)’s from overlap-
ping neighboring MT-spheres:

PRLφ
α
RL (ε, rR) = ϕαRl (ε, rR) − ϕ◦α

Rl (ε, rR) + PRLψ
α
RL (ε, rR)

= [ϕ − n+ (jα + n tanα) cot η]
tan η

tan ηα
+ n+ jα

Bα

κ

= ϕα + jα cot ηα − n
tan η − tanα

tan ηα
+ n+ jα

Bα

κ

= ϕα + jα cot ηα + jα
Bα

κ
(37)
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For simplicity, we have dropped all arguments and indices in the last three lines.
We see that the new phase shift, ηα, is given by:

tan ηαRL (ε) ≡ tan ηRl (ε) − tanαRL (ε) , (38)

as expected for the phase shift on the background of α. This is the same trans-
formation as the one obtained from (33) for −Bα (ε)−1

. The definition of the
renormalized free radial solution given in (36) may be written as:

ϕ◦α
RL (ε, r) ≡ nl (κr) − jαRL (ε, r) cot ηαRL (ε) (39)

= [nl (κr) tan ηRl (ε) − jl (κr)] cot ηαRL (ε) ,

and ϕαRl (ε, rR) is the solution of the radial Schrödinger equation, normalized in
such a way that it matches onto ϕ◦α

RL (ε, r) at the MT radius, sR. The definition
(39) reduces to (22) when α = 0.

The set of screened MTOs now consists of the screened MTOs (36) of all
active channels. Since the ϕ−ϕ◦ function has pure angular-momentum character,
the mixed character of the screened MTO stems solely from the ψ-function. The
result of projecting the screened MTO onto an active channel R′L′ different from
its own is seen from (30) to be:

PR′L′φαRL (ε, rR) = PR′L′ψα
RL (ε, rR) = jαR′L′ (ε, rR′)

Bα
R′L′,RL (ε)

κ
, (40)

when rR′ is so small that r lies inside only one MT-sphere, the one centered at
R′. From (40) and (37) it is then obvious that, in order to get a smooth linear
combination

∑
A φαA (ε, rA) cαA of screened MTOs, all jα-functions must cancel.

This leads to the condition that the energy must be such that the coefficients
can satisfy∑

A

[Bα
A′A (εi) + κ cot ηαA (εi) δA′A] cαA,i ≡

∑
A

Kα
A′A (εi) cαA,i = 0, (41)

for all active R′L′ ≡ A′. These are the screened KKR equations, and Kα (ε) is
the screened KKR matrix. If these equations are satisfied, the linear combination
of screened MTOs is:∑

A

φαA (εi, rR) cαA,i =
∞∑
l′=0

∑
m′

ϕαR′L′ (εi, rR′)YL′ (r̂R′) cαR′L′,i + (42)∑
R �=R′

∑
L

[ϕαRL (εi, rR) − ϕ◦α
RL (εi, rR)]YL (r̂R) cαRL,i

near site R′. As long as the MT-spheres do not overlap, this is a solution of
Schrödinger’s equation for the MT-potential and, if the potentials overlap, then
the ϕ − ϕ◦ tongues from the neighboring sites in the second line of (42) make
the wave function correct to first order in the overlap [20]. This is exactly as
in (27). The summation over spherical-harmonics around the central site inclu-
des the contributions −ϕI (ε, rR′)κ−1 tan ηI (ε)

∑
ABα

I,A (ε) cαA,i provided by the
screened-spherical-wave part of the MTO (see (36) and (35)).
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Although energy-dependent MTO sets with different screenings are not li-
nearly related, they all solve Schrödinger’s equation for the MT-potential used
for their construction via the corresponding KKR equation. E.g. had one chosen
a representation in which a channel making a significant contribution to a wave
function Ψi (r) with energy εi = ε were downfolded, then the corresponding so-
lution of the KKR equation (41) would arise from Bα (ε) being long ranged and,
as a function of ε, going through a zero-pole pair near εi. If the energy were now
fixed at some energy εν , and the energy-independent set φα (εν , r) were used as
the 0th-order MTO basis in a variational calculation, then a useful result could
in principle be obtained, but only if εν were chosen very close to εi.

Fig. 3. Si p111 member of a screened spd-set of 0th-order MTOs (see text and
Eqs.(36),(44)-(47)).

2.3 Hard-Sphere Interpretation and Redefinitions

We now wish to choose the background phase shifts for the active channels in
a way which reduces the spatial range and the energy dependence of the MTO
envelopes. It is obvious, that for the orbitals to be localized, they must have
energies below the bottom of the continuum of the background – defined as the
system which has the same structure as the real system, but has all phase shifts
equal to those of the background. Hence, the active α (ε)’s should be defined
in such a way that the energy band defined by:

∣∣B0 (ε) + κ cotα (ε)
∣∣ = 0, lie as

high as possible.
The discovery of a useful way of determining this background, turned out to

be the unplanned birth of the 3rd MTO generation [19,20]. Realizing that the
weakest point of the ASA was its solution of Poisson’s – and not Schrödinger’s –
equation, and unhappy with the complexities of existing full-potential schemes,
we [57] were looking for those linear combinations of Hankel functions – like (29)
– which would fit the charge density continuously at spheres. With Methfessel’s
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formulation [35]: What we wanted was those solutions of the wave equation which
are YL (r̂R) at their own sphere and for their own angular momentum, and zero
at all other spheres and for all other angular momenta. This set was therefore
named unitary spherical waves. The solution to this boundary-value problem is
of course a particular screening transformation (33).

Our way of defining the background was thus in terms of hard screening-
spheres for the active channels; the larger the screening spheres, the larger the
excluded volume and the higher the bottom of the continuum. The screening
spheres are not allowed to overlap – at least not if all l-channels were active,
because then a unitary spherical wave would be asked to take both values, 1
and 0, on the circle common to the central and an overlapping sphere. As a
consequence, in order to reduce the range and the energy dependence of the MTO
envelope functions, the screening spheres should in general be nearly touching.
Now, since the screening radii, , control the shapes of the envelopes, the relative
sizes of the screening spheres should be determined by chemical considerations,
i.e. the a’s may be covalent- or ionic radii in order that results obtained from an
electronic-structure calculation be interpretable in terms of covalency, ionicity
etc. Referring to the discussion in the Overview, one could say: The MT-spheres
(s) are potential-spheres and the screening-spheres (a) are charge-spheres.

Inspired by Ref. [21], practitioners of multiple-scattering theory – who tra-
ditionally take the Kohn-Rostoker [41] Green-function point of view – found
another useful way of determining the background phase shifts, namely in terms
of repulsive potentials [58].

For a given active channel (RL = A), the radial positions, r = aA (ε) , of
the nodes of the background functions jα given by (31) are the solutions of the
equation:

0 = jαA (ε, aA (ε)) = jl (κaA (ε)) − nl (κaA (ε)) tanαA (ε) .

Whereas attractive potentials usually do not give positive radii – for an example,
see the dotted curve in Fig. 2 – repulsive potentials do, as may be seen from the
radial Schrödinger equation (2). For a hard repulsive potential, the position of the
node is independent of energy and of l. What we shall use for the active channels
are therefore screening-sphere radii, aA, which are independent of energy and
which usually depend little on L among the active channels. In terms of such a
screening radius, the corresponding background phase shift is given by:

tanαA (ε) = jl (κaA) /nl (κaA) . (43)

Now, instead of having screened spherical waves (35) and MTOs (36) whose
active channels are irregular at the origin – the irregularities of the inactive chan-
nels were already gotten rid of by downfolding, followed by ϕ◦

I (ε, r) → ϕI (ε, r)
substitutions – we prefer that the active channels have merely kinks. This is
achieved by truncating all active jα-functions inside their screening spheres,
that is, we perform the substitution:

jαA (ε, r) →
{
0 for r < aA
jl (κr) − nl (κr) jl (κaA) /nl (κaA) for r ≥ aA

, (44)
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which is continuous but not differentiable, for the screened spherical waves and
for its own jα-function of the MTO – that is the second term on the last two lines
of (37). With that substitution, a screened spherical wave, ψα

RL (ε, rR) , vanishes
inside all screening spheres of the active channels – except inside its own, where
it equals nl (κrR)YL (r̂R) . This may be seen from (40) and the two first lines of
(37). Finally, if we renormalize according to:

ψa
RL (ε, rR) ≡ ψα

RL (ε, rR) /nl (κaRL) (45)

– note the difference between the superscripts a and α – we finally arrive at the
screened (unitary) spherical wave as defined in Refs. [19,20].

ψa
RL (ε, rR) is that solution of the wave equation which is YL (r̂R) on its own

screening sphere, has vanishing YL′ (r̂R′)-average on the screening spheres of the
other active channels, and joins smoothly onto the regular solutions of the radial
Schrödinger equations of the inactive channels. In those, the regular Schrödinger
solutions are, in fact, substituted for the wave-equation solutions.

It is now obvious, that overlap of screening spheres will cause complicated,
and hence long-ranged spatial behavior of the screened spherical waves, and the
worse, the more spherical harmonics are active.

With the normalization (45), there is apparently no need for functions, like
spherical Bessel and Neumann or Hankel functions, which have a branch-cut at
zero energy, and this was the point of view taken in the first accounts [19,20] of
the 3rd-generation method. However, the normalization (45) is not appropriate
for a=0, and expressing the screened structure matrix in terms of the bare one
(24) – which is the only one computable in terms of elementary functions – was
slightly painful in Ref. [19]; moreover, in that paper downfolding was not presen-
ted in its full generality. In these respects, the present, conventional derivation
is simpler, but it takes more equations.

With the α → a redefinitions (44)-(45), the MTO remains as defined by
(36), but with the screened spherical waves and its own jα-function truncated
as described above. We may also renormalize the MTO like in (45):

φaRL (ε, rR) ≡ φαRL (ε, rR) /nl (κaRL) , (46)

whereby these energy-dependent 0th-order MTOs become identical with the kin-
ked partial waves of Refs. [19,20]. This normalization corresponds to:

ϕ◦ a
Rl (ε, aRL) ≡ 1. (47)

Note that this will cause the normalization of the radial Schrödinger-equation
solution, ϕa (ε, r) , to depend on m in case the corresponding screening radius is
chosen to do so.

In Fig. 3 we show the screened counterpart of the bare Si p orbital in Fig.
2. Since only the two first terms of (36) – but not the screened spherical wave
– has pure angular momentum, we cannot plot just the radial wave function
like in Fig. 2. Rather, we show the MTO together with its three parts along the
[111]-line between the central atom and one of its four nearest neighbors in the
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diamond structure. The positions of the central and the nearest-neighbor atoms
are indicated on the axis (Si), and so is the intersection with the central MT-
sphere (s). The p orbital chosen is the one pointing along this [111] direction.
The Si spd channels were taken as active, and to have one and the same screening
radius, a = 0.75t, where t is half the nearest-neighbor distance, i.e., the touching-
sphere radius. The places where the central and the nearest-neighbor screening
spheres intersect the [111]-line are indicated by ’← a’ and ’a →’ with the arrow
pointing towards the respective center. We see that the central MT-sphere is so
large, that it overlaps the screening sphere of the neighboring atom. Like in Fig.
2, the full curve shows the MTO (φa), and the dot-dashed (ϕaY ), the dotted
(ϕ◦ aY ), and the dashed (ψa) curves show the three terms in the renormalized
version of equation (36). The dot-dashed and the dotted curves are identical with
those in Fig. 2, except for the normalization; they are the outwards-integrated
solution (ϕaY ) of the radial Schrödinger equation, continued by the inwards-
integrated solution (ϕ◦ aY ) for the flat potential. These two curves have been
deleted outside the central MT-sphere where their contribution to the MTO
(36) cancels. The inwards integration ends at the screening sphere, inside which
ϕ◦ a – with ja truncated – cancels its own-part, nl (κr) /nl (κa) , of the screened
spherical wave, ψ, shown by the dashed curve (see Eqs. (37) and (44)). Neither
of these cancelling parts are shown in the figure, and the dashed curve inside the
central screening sphere therefore merely shows the contribution to the screened
spherical wave from the inactive channels (l ≥ 3). Due to the ja-truncations,
the screened spherical wave has kinks at all screening spheres and, inside these
spheres, only the contribution from the inactive partial waves – which are regular
solutions of the radial Schrödinger equations – remain. The full curve is the
MTO, which is identical with the screened spherical wave outside its own MT-
sphere. At its own screening sphere, its kink differs from that of the screened
spherical wave due to the truncation of the ja-contribution to ϕ◦ a. Compared
with the bare MTO in Fig. 2, the screened MTO in Fig. 3 is considerably more
localized, even though a negative energy was chosen.

If one demands that the valence band – as well as the lower part of the
conduction band – of Si be described from first principles using merely the
minimal 4 orbitals per atom, one cannot use a set with p orbitals such as those
shown in Figs. 2 and 3; the d-MTOs must be folded into the envelopes of the
remaining sp set by use of the appropriate structure matrix obtained from Eq.
(33) with the choice (34) for the Si d-channels. The corresponding Si p111-MTO
is shown in Fig. 4. Little is changed inside the central screening sphere, but the
tail extending into the nearest-neighbor atom has attained a lot of d-character
around that site, and the MTO is correspondingly more delocalized.

The Si p111-MTO for use in an sp MTO basis constructed from the con-
ventional Si+E potential – for which the diamond structure is packed bcc with
equally large space-filling spheres – is obtained by down-folding of the Si d and
all empty-sphere channels. It turns out to be so similar to the one obtained from
the fat Si-centered potential shown in Fig. 4, that we will not take the space to
show it.
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Whereas the bare MTO in Fig. 2 is what has always been called a bare
MTO, the screened ones in Figs. 3 and 4 look more like a partial wave, ϕY, with
a tail attached at its own screening sphere – and with kinks at all screening
spheres. Hence the name ’kinked partial wave’ given in Ref. [19]. In this original
derivation, kinked partial waves with a = s ≤ t were considered first, and only
later, the limiting case a → 0 gave rise to a painful exercise. The kinked partial
waves have in common with Slater’s original Augmented Plane Waves (APWs)
[59], that they are partial waves, ϕ (ε, r)Y, of the proper energy inside non-
overlapping spheres, which are joined continuously – but with kinks – to wave-
equation solutions in the interstitial. In that region, the APW is a wave-equation
solution with a given wave-vector, whereas the MTO is a solution with the
same energy. Moreover, whereas the APW method uses identical potential and
augmentation spheres, this is not the case for MTOs.

If – for the third time in this section – we make a linear combination of MTOs
– this time defined with kinks – and demand that it solves Schrödinger’s equation,
then the condition is, that the kinks – rather than the jα-functions – from the
tails should cancel the ones in the head. This condition is of course equivalent
with the one for jα-cancellation. Nevertheless, let us express the KKR equations
in this language because it will turn out to have three further advantages: The
artificial dependence on κ ≡

√
ε and the associated change between Neumann

and decaying Hankel functions will disappear, there will be a simple expression
for the integral of the product of two MTOs, and we will be led to a contracted
Green function of great use in the following section.

Since the kinks arise because the jα-functions are truncated inside their
screening spheres, the kink in a certain active channel of an MTO is propor-
tional to the slope of the corresponding jα-function at a+. An expression for
this slope is most easily found from the Wronskian, which in general is defined
as: r2 [f (r) g′ (r) − g (r) f ′ (r)] ≡ {f, g}r , and is independent of r when the two
functions considered are solutions of the same linear, second-order differential

Fig. 4. Si p111 member of a screened minimal sp-set of 0th-order MTOs (see text).
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equation. As a consequence, {n, jα} = {n, j − n tanα} = {n, j} = −κ−1, and
therefore:

∂jα (ε, r) /∂r|a+
= −

[
a2κn (κa)

]−1
. (48)

We now define the elements Ka
R′L′,RL (ε) – where R′L′ and RL both refer to

active channels – of a kink matrix [19,20] as a2
R′L′ times the kink in the R′L′-

channel of φaRL (ε, rR) . From the expression for ∂jα /∂r|a+
, the last forms of the

spherical-harmonics expansions (37) and (40), the definition (41) of the screened
KKR matrix, and the renormalization (46), this is seen to be:

Ka
R′L′,RL (ε) =

−Kα
R′L′,RL (ε)

κnl′ (κaR′L′) κnl (κaRL)
. (49)

Note that this is the kink matrix as defined in Ref. [20], whereas the one defined
in Ref. [19] has the opposite sign. As presently defined, the energy derivative of
the kink matrix is positive definite, as we shall se in the next section.

Screening and the definition (49) have removed the spurious energy depen-
dencies of Kα=0 (ε). To see this more clearly, let us use the first – rather than the
last – forms of the spherical-harmonics expansions (37) and (40), which are also
more closely related to the definition (36) of the MTO, and to Figs. 3 and 4: The
kink matrix for ψa

A (ε, rR) is − [κnl′ (κaA′)]−1
Bα
A′A (ε) [κnl (κaA)]

−1. Moreover,
ψa
A (ε, rR) contains the diverging term n (κr) /n (κa) in its own channel, which

in the MTO is being cancelled by a term from ϕ◦ a (see the third equation (37)
and (38)). The kink matrix for the MTO set is now seen to equal the one for
the set of screened spherical waves, plus – in the diagonal – the kink in the
function ϕa −ϕ◦ a + n (κr) /n (κa) . Since ϕ−ϕ◦ is smooth, this kink is the one
between the radial functions ϕ◦ a (ε, r) and n (κr) /n (κa) . We thus arrive at the
expression:

Ka
R′L′,RL (ε) = −

Bα
R′L′,RL (ε)

κnl′ (κaR′L′) κnl (κaRL)
(50)

+aRL [∂ {nl (ε, a)} − ∂ {ϕ◦
l (ε, a)}] δR′RδL′L

= a2
R′L′

∂

∂r
PR′L′ψa

RL (ε, rR)
∣∣∣∣
a

− aA∂ {ϕ◦
l (ε, a)} δR′RδL′L

≡ Ba
R′L′,RL (ε) − aRL ∂ {ϕ◦

l (ε, a)} δR′RδL′L, (51)

in terms of the logarithmic-derivative function at the screening sphere of the
inwards-integrated radial function, ∂ {ϕ◦

l (ε, a)} ≡ ∂ ln |ϕ◦
l (ε, r)| /∂ ln r|a. Re-

member that RL and R′L′ refer to active channels.
In the third line of (50) we have pointed to the fact that the first, potential-

independent part of the kink matrix is a2
A′ times the outwards slope of the scre-

ened spherical wave and in (51) we have denoted this slope matrix Ba
R′L′,RL (ε) .

Note that, as presently defined, this slope matrix is Hermitian and equals aR′L′

times the non-Hermitian slope matrix defined in Refs. [19,20]; moreover, the
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transformation from Bα to Ba is not quite (49), but differs from it by the term
a∂ ln |nl (κr)| /∂ ln r|a. We may switch from Neumann to Bessel functions, using
again that jl (κa) = nl (κa) tanα, and that {j, n} = 1/κ. We get:

Ba (ε) = − tanα (ε)
κj (κa)

[Bα (ε) − κ cotα (ε)]
tanα (ε)
κj (κa)

+ a∂ {j (κa)}

=
1

j (κa)
[B (ε) + κ cotα (ε)]−1 1

j (κa)
+ a∂ {j (κa)} , (52)

where the last equation has been obtained with the help of (33), and where
B (ε) ≡ Bα=0 (ε) is the bare KKR structure matrix (24). The matrix B (ε) +
κ cotα (ε) is the bare KKR matrix for the background-potential and has dimen-
sion (A+ I)2 ; it only truncates when αI (ε) ≡ ηI (ε) = 0, as it happens for high
l.

Computational Procedure. The recipe for a computation could be: Solve
the radial Schrödinger equations outwards, and then inwards to a ∼ 0.8t, for
all channels up l � 3. Then, compute the Green matrix of the background,
Gα=0 (ε) ≡

[
Bα=0 (ε) + κ cotα (ε)

]−1
, by inversion in real space, choosing the

strong screening just mentioned, i.e. nearly touching screening spheres for all
spd (f) channels. This gives the strongly screened structure matrix, Bα (ε) or
Ba (ε) , according to (52), and the KKR matrix, Kα (ε) or Ka (ε) , for the real
potential in the strongly screened representation according to (41) or (51). For
a crystal, Bloch-sum the KKR matrix. Now, invert this matrix in real space to
obtain the Green matrix, Gα (ε) ≡ Kα (ε)−1 or Ga (ε) ≡ Ka (ε)−1

. Next, choose
the physically and chemically motivated screening (β) and rescreen the Green
matrix to the downfolded representation, Gβ (ε) or Gb (ε) , using the scaling
relations (53) or (55) derived below. As will be explained in the following Sect.
3, this should be done for a number of energies. In addition, one will need the first
energy derivatives Ġb (ε) . The latter may be obtained from K̇a (ε) via numerical
differentiation of the weakly energy dependent structure matrix, Ba (ε) , and
calculation of

∫ s
0 ϕa (ε, r)2 r2dr −

∫ s
a
ϕ◦ a
RL (ε, r)2 r2dr for the energy derivative of

the logarithmic derivative function in (51), as will be shown in (61)-(63) below.
With this K̇a (ε) , compute Ġa (ε) from (63) and, finally, rescreen to Ġb (ε) using
the energy derivative of (55) given below.

In order to evaluate the wave function (42), one needs in addition to Bb
A′A (ε) ,

the block Bb
IA (ε) , and this may be obtained from (52).

The relation of the screening constants, the structure matrix, and the KKR
matrix to those – see (10) and (11) – of the conventional ASA is simple, but not
as straightforward as the α-to-a transformations of the present section, so for
this topic we refer to Refs. [19,20].

This completes our exact transformation of the original KKR matrix (26)
which has long range and strong energy dependence [B0 (ε,k) has poles at the
free-electron parabola:

∑
G |k + G|2 =ε ] to a screened and renormalized KKR
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matrix which – depending on the screening – may be short ranged and weakly
energy dependent. The kink matrix is expressed in terms of a slope matrix,
which only depends on the energy and the structure of the background, and the
logarithmic derivatives of the active radial functions extrapolated inwards to the
appropriate screening radius.

2.4 Re-screening the Green Matrix

In the ASA, it is simpler to re-screen the Green matrix (15) than the structure
matrix (10), because the former involves additions to the diagonal and energy-
dependent rescaling of rows and columns, but no matrix inversions. The same
holds for the fully energy-dependent matrices of the 3rd-generation, as may be
seen from (33) or (52) for the structure matrix. For the Green matrix (41), we
get with the help of (52) and a bit of algebra:

Gα (ε) ≡ Kα (ε)−1 = κ−1 tanα (ε) [1 − tanα (ε) cot η (ε)]
+ [1 − tanα (ε) cot η (ε)]Gα=0 (ε) [1 − tanα (ε) cot η (ε)] ,

which has the form (15). Solving for Gα=0 (ε) and setting the result equal to
Gβ (ε) yields the following relation for re-screening of the Green matrix:

Gβ (ε) =
tan ηβ (ε)
tan ηα (ε)

Gα (ε)
tan ηβ (ε)
tan ηα (ε)

− tanα (ε) − tanβ (ε)
κ

tan ηβ (ε)
tan ηα (ε)

. (53)

In a-language, where according to (49): Ga (ε) = −κn (κa)Gα (ε)κn (κa) , the
diagonal matrices in (53) become [n (κb) /n (κa)]

[
tan ηβ (ε) / tan ηα (ε)

]
and

κn (κa)n (κb) [tanα (ε) − tanβ (ε)] and may, in fact, be expressed more simply
in terms of the inwards-integrated radial wave function, renormalized according
to (47). In order to see this, we first use the form (39):

ϕ◦ a (ε, r) =
n (κr) tan ηα (ε) − jα (ε, r)

n (κa) tan ηα (ε)
,

and then evaluate this at the screening-radius b :

ϕ◦ a (ε, b) =
n (κb) tan ηα (ε) − jα (ε, b)

n (κa) tan ηα (ε)
=

n (κb) tan ηβ (ε)
n (κa) tan ηα (ε)

.

To obtain this result, we have also used:

jα (ε, b) = j (κb) − n (κb) tanα (ε) = n (κb) [tanβ (ε) − tanα (ε)] ,

from (31) and (43). The second, readily computable function is that solution of
the radial wave equation which vanishes at a with slope 1/a2 :

ja (ε, r) ≡ jα (ε, r)
a2∂jα (ε, r) /∂r|a

= −κn (κa) jα (ε, r) . (54)
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Evaluation at r = b yields:

ja (ε, b) = −κn (κa) jα (ε, b) = κn (κa)n (κb) [tanα (ε) − tanβ (ε)] ,

which is the second function needed. Hence, we have found the following simple
and practical scaling relation for re-screening of the Green matrix:

Gb (ε) = ϕ◦ a (ε, b) Ga (ε) ϕ◦ a (ε, b) + ja (ε, b) ϕ◦ a (ε, b) . (55)

2.5 Green Functions, Matrix Elements, and Charge Density

The kinked partial wave is the solution of the inhomogeneous Schrödinger equa-
tion:

(H − ε)φaR′L′ (ε, r) = −
∑
RL

δ (rR − aRL)YL (r̂R)Ka
RL,R′L′ (ε) , (56)

provided that we define the MTO (36) the 3-fold way indicated in Figs. 2 –
4, and therefore – for the MT-Hamiltonian H (4) – use the radial Schrödinger
equation (2) channel-wise.

The kinks of the MTO are given correctly by (56), but the proper MTO
does not solve Schrödinger’s differential equation in the shells between the scre-
ening and the MT-spheres; here we need the 3-fold way. This way must not be
an approximation: For instance, when applied to those linear combinations of
MTOs which solve the KKR equations – and hence Schrödinger’s equation –
equation (56) is correct (and yields zero), because for each active channel, A′,
the two solutions, PA′

∑
A ψa

A (ε, rR) caA and ϕ◦ a
A′ (ε, rR′) caA′ , of the radial wave

equation match in value and slope at aR′L′ , and therefore cancel throughout
the shell sR′ − aR′L′ . Expressed in another way: For energy-dependent MTOs,
kink-cancellation leads to cancellation of the triple-valuedness. For the energy-
independent NMTOs to be derived in the next section, special considerations
will be necessary.

Solving (56) for δ (rR − aRL)YL (r̂R) , leads to:

(H − ε)
∑
R′L′

φaR′L′ (ε, r)Ga
R′L′,RL (ε) = −δ (rR − aRL)YL (r̂R) (57)

which shows that the linear combinations

γaRL (ε, r) =
∑
R′L′

φaR′L′ (ε, r)Ga
R′L′,RL (ε) , (58)

of MTOs – all with the same energy and screening – is a contraction of r′ onto
the screening spheres (r′ → aRL, RL) of the Green function defined by:

(Hr − ε)G (ε; r, r′) = −δ (r − r′) .
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The contracted Green function γaRL (ε, r) has kink 1 in its own channel and kink
0 in all other active channels (�= RL) . This function is therefore a solution of
the Schrödinger equation (defined the 3-fold way) which is smooth everywhere
except at its own screening sphere. γaRL (ε, r) is usually delocalized, and when
the energy, ε, coincides with a pole, εj , of the Green matrix, γaRL (ε, r) diverges
everywhere in space. This means, that when ε = εj , then the renormalized
function is smooth also at its own sphere, and it therefore solves Schrödinger’s
equation. In vector-matrix notation, equations (56) and (57) become:

(H − ε)φa (ε, r) = −δa (r)Ka (ε) ,
(H − ε)φa (ε, r)Ga (ε) ≡ (H − ε) γa (ε, r) = −δa (r) ,

where we have defined a set of spherical harmonics on the a-shells with the
following members:

δaRL (rR) ≡ δ (rR − aRL)YL (r̂R) . (59)

If expressed in real space, our Green matrix, Ga (ε) , is what in multiple-
scattering theory [11] is usually called the scattering path operator and denoted
τ (ε). In the 2nd-generation LMTO formalism, it was denoted g (ε) , but in the
present paper we denote matrices by capitals.

Since in the 3-fold way, an MTO takes the value one at its own screening
sphere and zero at all other screening spheres, expression (56) yields for the
matrix element of H − ε with another, or the same, MTO in the set:

〈φaR′L′ (ε) |H − ε|φaRL (ε)〉 = −Ka
R′L′,RL (ε) ≡ −Ga

R′L′,RL (ε)−1
, (60)

which says that the negative of the kink matrix is the Hamiltonian matrix, minus
the energy, in the basis of energy-dependent 0th-order MTOs.

For the overlap integral between screened spherical waves, with possibly dif-
ferent energies and in the interstitial between the screening spheres, defined
channel-by-channel, we obtain the simple expression [19]:

〈ψa
R′L′ (ε′) | ψa

RL (ε)〉 =
Ba
R′L′,RL (ε′) − Ba

R′L′,RL (ε)
ε′ − ε

(61)

−→ Ḃa
R′L′,RL (ε) if ε′ → ε

by use of Green’s second theorem, together with expression (51) for the surface
integrals. Note that, neither active channels different from the eigen-channels,
R′L′ and RL, nor the inactive channels contribute to the surface integrals. The
reasons are that ψa

R′L′ (ε′, r) and ψa
RL (ε, r) vanish on all ’other’ screening sphe-

res, and that they are regular in the inactive channels. The latter means that,
in the inactive channels, the ’screening-sphere interstitial’ extends all the way
to the sites (aI → 0). For the overlap integral between kinked partial waves, the
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3-fold way yields:

〈φaR′L′ (ε′) | φaRL (ε)〉 ≡ 〈ψa
R′L′ (ε′) | ψa

RL (ε)〉 + δR′RδL′L ×(∫ sR

0
ϕaRL (ε′, r)ϕaRL (ε, r) r2dr −

∫ sR

aRL

ϕ◦ a
RL (ε′, r)ϕ◦ a

RL (ε, r) r2dr

)

=
Ka
R′L′,RL (ε′) − Ka

R′L′,RL (ε)
ε′ − ε

−→ K̇a
R′L′,RL (ε) if ε′ → ε. (62)

For the overlap matrix for the set of contracted Green functions, this gives:

〈γa (ε′) | γa (ε)〉 = −Ga (ε′) − Ga (ε)
ε′ − ε

(63)

→ −Ġa (ε) = Ga (ε) K̇a (ε)Ga (ε) if ε′ → ε.

We see that Ḃa (ε) , K̇a (ε) , and Ġa (ε) are Hermitian, just like Ba (ε) , Ka (ε) ,
and Ga (ε). Whereas Ḃa (ε) and K̇a (ε) are positive definite matrices, that is,
their eigenvalues are positive or zero, Ġa (ε) is negative definite. For well-screened
MTOs, the logarithmic derivative functions in the diagonal of the kink matrix
(51) depend more strongly on energy than the slope matrix. The way to com-
pute the energy derivative K̇a (ε) is therefore to compute Ḃa (ε) by numerical
differentiation, and the remaining terms by integration as in (62).

In the following we shall stay with the normalization (45)-(47) denoted by
Latin – rather than Greek – superscripts and shall rarely change the screening.
We therefore usually drop the superscript a altogether. Some well-screened re-
presentation is usually what we have in mind, but also heavily down-folded –
and therefore long-ranged – representations will be considered. In those cases,
some parts of the computation must of course be performed in the Bloch – or
k-space – representation.

The wave function is Ψi (r) = φ (εi, r) ci , where the eigen(column)vector
ci solves the KKR equations, K (εi) ci = 0, and is normalized according to:
1 = c†

i K̇ (εi) ci, in order that 〈Ψi | Ψi〉 = 1. From the definition (36) of the MTO,
we see that an accurate approximation for the charge density, which is consistent
with the 3-fold way and, hence, with the normalization, has the simple form:

ρ (r) = ρψ (r) +
∑
R

[
ρϕR (rR) − ρϕ

◦
R (rR)

]
(64)

where the global contribution is:

ρψ (r) ≡
∑
RR′

∑
LL′

∫ εF

ψRL (ε, rR) ΓRL,R′L′ (ε) ψR′L′ (ε, rR′)∗ dε (65)
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and the local contributions, ρϕR (rR) − ρϕ
◦

R (rR) , which vanish smoothly at their
respective MT-sphere, are given by:

ρϕR (r) =
∑
LL′

YL (r̂)Y ∗
L′ (r̂)

∫ εF

ϕRl (ε, r) ΓRL,RL′ (ε) ϕRl′ (ε, r) dε

ρϕ
◦

R (r) =
∑
LL′

YL (r̂)Y ∗
L′ (r̂)

∫ εF

ϕ◦
Rl (ε, r) ΓRL,RL′ (ε) ϕ◦

Rl′ (ε, r) dε . (66)

The common density-of-states matrix in these equations is:

ΓRL,R′L′ (ε) =
occ∑
i

cRL,iδ (ε − εi) c∗
R′L′,i =

1
π
ImGRL,R′L′ (ε+ iδ) . (67)

The approximations inherent in (64) are that all cross-terms between products
of ψ-, ϕ-, and ϕ◦-functions, and between ϕ- or ϕ◦-functions on different sites are
neglected.

3 Polynomial MTO Approximations

In this section we shall show how energy-independent basis sets may be derived
from the kinked partial waves, that is, how we get rid of the energy dependence
of the MTOs. Specifically, we shall preview the generalization [51,24] of the
3rd-generation LMTO method [19,20] mentioned in connection with Fig. 1. This
generalization is to an ’N’MTO method in which the basis set consists of energy-
independent NMTOs,

χ
(N)
RL (r) =

N∑
n=0

∑
R′L′

φR′L′ (εn, r) L
(N)
R′L′,RL;n , (68)

where
N∑
n=0

L
(N)
R′L′,RL;n = δR′RδL′L,

constructed as linear combinations of the kinked partial waves at a mesh of
N + 1 energies, in such a way that the NMTO basis can describe the solutions,
Ψi (r) , of Schrödinger’s equation correctly to within an error proportional to
(εi − ε0) (εi − ε1) ... (εi − εN ) . Note the difference between one-electron energies
denoted εi and εj , and mesh points denoted εn and εm, with n and m taking
integer values. The set, χ(N=0) (r) , is therefore simply φ (ε0, r) , and this is the
reason why, right at the beginning of the previous section, φ (ε, r) was named the
set of 0th-order energy-dependent MTOs. For N > 0, the NMTOs are smooth
and their triple-valuedness decreases with increasing N. For the mesh condensing
to one energy, εν , the NMTO basis is of course constructed as linear combinations
of φ (εν , r) and its first N energy derivatives at εν . For N=1, this is the well-
known LMTO set.
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The immediate practical use of this new development is to widen and sharpen
the energy window inside which the method gives good wave functions, without
increasing the size of the basis set. One may even decrease the size of the basis
through downfolding, and still maintain an acceptable energy window by increa-
sing the order of the basis set. The prize for increasing N is: More computation
and increased range of the basis functions.

3.1 Energy-Independent NMTOs

What we have done in the previous sections – one might say – is to factorize
out of the contracted Green function, γ (ε, r) , some spatial functions, φRL (ε, r) ,
which are so localized that, for two energies inside the energy-window of interest,
the corresponding functions, φRL (ε, r) and φRL (ε′, r) , cannot be orthogonal. In
other words: The kinked partial waves are so well separated through localization
and angular symmetry that we need only one radial quantum number for each
function.

Now, we want to get rid of the kinks and to reduce the triple-valuedness and
the energy dependence of each kinked partial wave – retaining its RL-character
– to a point where the triple-valuedness and the energy-dependence may both
be neglected. This we do, first by passing from the set φ (ε, r) to a set of so-
called Nth-order energy-dependent MTOs, χ(N) (ε, r) , whose contracted Green
function,

χ(N) (ε, r)G (ε) ≡ φ (ε, r)G (ε) −
N∑
n=0

φ (εn, r)G (εn)A(N)
n (ε) , (69)

differs from φ (ε, r)G (ε) by a function which remains in the Hilbert space span-
ned by the set φ (ε, r) with energies inside the window of interest, and which
is analytical in energy. The two contracted Green functions thus have the same
poles, and both energy-dependent basis sets, φ (ε, r) and χ(N) (ε, r) , can there-
fore yield the exact Schrödinger-equation solutions. The analytical functions of
energy we wish to determine in such a way that χ(N) (ε, r) takes the same value,
χ(N) (r) , at the N + 1 points, ε0, ..., εN . With the set χ(N) (ε, r) defined that
way, we can finally neglect its energy dependence, and the resulting χ(N) (r) is
then the set of Nth-order energy-independent MTOs.

Other choices for the analytical functions of energy, involving for instance
complex energies or Chebyshev polynomials, await their exploration.

One solution with the property that χ(N)
RL (ε, r) takes the same value for ε at

any of the N + 1 mesh points, is of course given by the polynomial:

A
(N)
n;R′L′,RL (ε) = δR′RδL′L

N∏
m=0, �=n

ε − εm
εn − εm

,

of Nth degree. But this solution is useless, because it yields: χ(N) (r) = 0. If,
instead, we try a polynomial of (N −1)st degree for the analytical function, then
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we can write down the corresponding expression for the set χ(N) (r) without
explicitly solving for the (N + 1)2 matrices A(N)

n (εm) , and then prove afterwards
that each basis function has its triple-valuedness reduced consistently with the
remaining error ∝ (εi − ε0) (εi − ε1) ... (εi − εN ) of the set.

Since we want χ(N) (εn, r) to be independent of n for 0 ≤ n ≤ N, all its
divided differences on the mesh – up to and including the divided difference
of order N – vanish, with the exception of the 0th divided difference, which is
χ(N) (r). As a consequence, the Nth divided difference of χ(N) (ε, r)G (ε) on the
left-hand side of (69) is χ(N) (r) times the Nth divided difference of the Green
matrix. Now, the Nth divided difference of the last term on the right-hand side
vanishes, because it is a polynomial of order N − 1, and as a consequence,

χ(N) (r) =
∆Nφ (r)G
∆ [0...N ]

(
∆NG

∆ [0...N ]

)−1

. (70)

This basically solves the problem of finding the energy-independent NMTOs!
What remains, is to factorize the divided difference of the product φ (ε, r)G (ε)
into spatial functions, φ (εn, r) , which are vectors in RL, and matrices, G (εn) ,
with n = 0, ..., N. Equivalently, we could use a binomial divided-difference series
in terms of φ (ε0, r) and its first N divided differences on the mesh together with
G (εN ) and its corresponding divided differences.

For a condensed energy mesh, defined by: εn → εν for 0 ≤ n ≤ N, the Nth
divided difference becomes 1

N ! times the Nth derivative:

∆Nf

∆ [0...N ]
≡ f [0...N ] → 1

N !
dNf (ε)
dεN

∣∣∣∣
εν

, (71)

but since a discrete mesh with arbitrarily spaced points is much more powerful
in the present case where the time-consuming part of the computation is the
evaluation of the Green matrix (and its first energy derivative for use in Eq.
(63)) at the energy points, we shall proceed using the language appropriate for
a discrete mesh. In (71) we have introduced the form f [0...N ] because it may –
more easily than ∆Nf/∆ [0...N ] – be modified to include another kind of divided
differences, the so-called Hermite divided differences, which we shall meet later.

Readers interested in the details of the discrete formalism are referred to the
Appendix where we review relevant parts of the classical theory of polynomial
approximation, and derive formulae indispensable for the NMTO formalism for
discrete meshes. Readers merely interested in an overview, may be satisfied with
the formalism as applied to a condensed mesh and for this, they merely need
the translation (71) together with the divided-difference form of the NMTO to
be described in the following. Details about the Lagrange form may be ignored.

Lagrange form. We first use the Lagrange form (149) of the divided difference
to factorize the energy-independent NMTO (70) and obtain:

χ(N) (r) =
N∑
n=0

φn (r) Gn∏N
m=0, �=n (εn − εm)

G [0..N ]−1
, (72)
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Fig. 5. Si p111 member of the spd-set of 0th (dottet) and 1th-order MTOs (see text
and Eq.(74)).

Here and in the following, φn (r) ≡ φ (εn, r) and Gn ≡ G (εn) . Eq. (72) has the
form (68) and we see, that the weight with which the MTO set at εn enters the
NMTO set, is:

L(N)
n =

Gn∏N
m=0, �=n (εn − εm)

G [0..N ]−1
. (73)

By application of (149) to the Green matrix, we may verify that these Lagrange
weights sum up to the unit matrix. For this reason, the RL characters of the
NMTO basis functions will correspond to those of the kinked partial waves.

As an example, for N=1 we get the so-called chord-LMTO:

χ(1) (r) = φ0 (r)G0 (G0 − G1)
−1 + φ1 (r)G1 (G1 − G0)

−1

= φ0 (r) (K1 − K0)
−1

K1 + φ1 (r) (K0 − K1)
−1

K0 (74)

= φ0 (r) − φ ([01] , r)K [01]−1
K0

→ φ (r) − φ̇ (r) K̇−1K.

In this case, there is only one energy difference, ε0 − ε1, so it cancels out. In the
3rd line, we have reordered the terms in such a way that the Newton form, to
be derived for general N in (88) and (90) below, is obtained. In the 4th line,
we have condensed the mesh onto εν , whereby the well-known tangent-LMTO
[19,20] is obtained. The latter is shown by the full curve in Fig.5 for the case of
the Si p111-orbital belonging to an sp set. The dashed curve is the corresponding
kinked partial wave, φ (r) , shown by the full curve in Fig. 4. Compared to the
latter, χ(1) (r) is smooth, but has longer range. The strong contributions to the
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tail of the LMTO from φ̇ (r)’s on the nearest neighbor are evident. It is also clear,
that for computations involving wave functions – e.g. of the charge density – the
building blocks will rarely be the NMTOs, but the kinked partial waves, φn (r) ,
which are more compact.

One might fear that the discrete NMTO scheme would fail when one of the
mesh points is close to a one-electron energy, that is, to a pole of the Green
matrix, but that does not happen: If one of the Gn’s diverges, this just means
that the corresponding Lagrange weight is 1, and the others 0. Hence, in this
case the NMTO is just φn (r) , and this is the correct result. Moreover, the
kink of this single φn (r) does not matter, because in this case where G (ε) is
at a pole, the determinant of its inverse vanishes, so that the kink-cancellation
equations, Kncn = 0, have a non-zero solution, cn, which yields a smooth linear
combination, φn (r) cn, of NMTOs.

Kinks and triple-valuedness. The energy-independent NMTOs have been de-
fined through (69) and (70) in such a way that χ(N) (ε, r)−χ(N) (r) ∝ (ε − ε0) ...
(ε − εN ). We now show, that also the kink-and-triple-valuedness of χ(N) (r) is
of that order, and therefore negligible.

The result of projecting the energy-dependent MTO onto YL′ (r̂R′) for an
active channel was given in (37) for its own channel, and in (40) for any other
active channel. Together, these results may be expressed as:

PR′L′φαRL (ε, rR) = ϕαRl (ε, rR) δR′RδL′L + jαR′L′ (ε, rR′)κ−1 ×[
κ cot ηαRL (ε) δR′RδL′L +Bα

R′L′,RL (ε)
]

or, in terms of the renormalized functions (44), (46), (47), and (54), as well as
the kink matrix defined in (49), as:

PR′L′φaRL (ε, rR) = ϕaRl (ε, rR) δR′RδL′L + jaR′L′ (ε, rR′)Ka
R′L′,RL (ε) .

Here, like in (37) and (40), contributions from MT-overlaps – which are irrele-
vant for the present discussion – have been neglected. Without kinks and triple-
valuedness, PR′L′φaRL (ε, rR) would be given by the first term, and the kinks and
the triple-valuedness are therefore given by the second term:

TR′L′φaRL (ε, rR) = jaR′L′ (ε, rR′)Ka
R′L′,RL (ε) . (75)

This vanishes for those linear combinations of MTOs which solve the kink-
cancellation conditions.

What now happens for the energy-independent approximation, χ(0) (r) ≡
φ0 (r) , to the 0th-order energy-dependent MTO, χ(0) (ε, r) ≡ φ (ε, r) , is that the
former has kinks and triple-valuedness, but both are proportional toK (ε0) which
– according to (56) – is proportional to H−ε0 and, hence, to εi−ε0. The kinks and
triple-valuedness are thus of the same order as the error of χ(0) (r) . Similarly, for
N > 0, the fact that the A

(N)
n (ε)’s are polynomials of (N − 1)st degree, reduces

the triple-valuedness of χ(N) (r) to being proportional to (ε − ε0) ... (ε − εN ) ,
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as we shall now see: Multiplication of (75) with Ga (ε) from the right yields:
T φa (ε, r)Ga (ε) = ja (ε, r) , and for the kinks and the triple-valuedness of the
contracted Green function (69) we therefore get:

T χ(N) (ε, r)G (ε) = ja (ε, r) −
N∑
n=0

ja (εn, r)A(N)
n (ε) .

Taking again the Nth divided difference for the mesh on which χ(N) (ε, r) is
constant yields:

T χ(N) (r) = ja ([0...N ] , r)Ga [0...N ]−1 (76)

= −ja ([0...N ] , r)
(
E(0) − ε0

)(
E(1) − ε1

)
...

(
E(N) − εN

)
,

for the kinks and the triple-valuedness of the energy-independent NMTO. In
the last line, we have used an expression – which will be proved in (83) – for
the inverse of the Nth divided difference of the Green matrix in terms of the
product of energy matrices to be defined in (81). At present, it suffices to note
that differentiation of the Green function,

Ǧ (ε) ≡
∑
j

1
ε − εj

, (77)

for a model with one, normalized orbital yields:[
1
N !

dN Ǧ (ε)
dεN

∣∣∣∣
εν

]−1

= −

∑
j

1

(εj − εν)
N+1

−1

≈ − (εi − εν)
N+1

,

where the last approximation holds when the mesh is closer to the one-electron
energy of interest, εi, than to any other one-electron energy, εj �= εi. Note that j
– and not n – denotes the radial quantum number. Similarly, this model Green
function has a divided difference on a discrete mesh of N+1 points, whose inverse
is:

Ǧ [0..N ]−1 = −

∑
j

1∏N
n=0 (εj − εn)

−1

≈ −
N∏
n=0

(εi − εn) , (78)

as proved in Eq. (159) of the Appendix. We have thus seen that the triple-
valuedness is of the same order as the error present in χ(N) (r) due to the neglect
of the energy-dependence of χ(N) (ε, r) .

The radial function ja (ε, r) in (75) vanishes for r ≤ a, where it has a kink of
value 1/a2, and it solves the radial wave equation for r ≥ a. As shown in [51],
its expansion in powers of r − a ≥ 0 is:

rja (ε, r) =
r − a

a
+

1
3!

[
l (l + 1) − εa2](r − a

a

)3

− l (l + 1)
3!

(
r − a

a

)4

+
1
5!

[
18l (l + 1) +

(
l (l + 1) − εa2)2

](
r − a

a

)5

+ ... .
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This means the Nth divided-difference function entering (76) satisfies:

ja ([0...N ] , r) ∝ (r − a)2N+1
.

The kink and triple-valuedness (76) in the s − a shell of χ(N) (r) is thus pro-
portional to (r − a)2N+1 ∏N

n=0 (εi − εn) , and for this reason the energy-window
widens as s − a decreases, that is, as the screening increases.

Transfer matrices and correspondence with Lagrange interpolation.
We need to work out the effect of the Hamiltonian on the NMTO set. Since the
NMTOs with N > 0 are smooth, the contributions from the delta-function on
the right-hand side of (57) for the contracted Green function will cancel in the
end. Operation on (69) therefore yields:

H
[
φ (ε, r) − χ(N) (ε, r)

]
G (ε) = φ (ε, r) εG (ε) − Hχ(N) (ε, r)G (ε)

=
∑N

n=0
φn (r) εnGnA

(N)
n (ε)

and by taking the Nth divided difference for the mesh on which χ(N) (ε, r) is
constant, we obtain:

Hγ ([0...N ] , r) = Hχ(N) (r)G [0...N ] = (φεG) ([0...N ] , r)
= γ ([0..N − 1] , r) + εN γ ([0...N ] , r) , (79)

using (151) with the choice of the last point on the mesh. Solving for the NMTOs
yields:

(H − εN )χ(N) (r) = χ(N−1) (r)
(
E(N) − εN

)
(80)

where χ(N−1) (r) ≡ γ ([0..N − 1] , r) G [0..N − 1]−1 is the energy-independent
MTO of order N − 1, obtained by not using the last point. Moreover,

E(N) ≡ εN + G [0..N − 1]G [0...N ]−1 = (εG) [0...N ] G [0...N ]−1

=
N∑
n=0

εnGn∏
m=0, �=n (εn − εm)

G [0...N ]−1 =
N∑
n=0

εnL
(N)
n , (81)

is the energy matrix which – in contrast to χ(N−1) (r) – is independent of which
point on the mesh is omitted. The first equation (81) shows how to compute
E(N) and the last equation shows that E(N) is the energy weighted on the 0...N -
mesh by the Lagrange matrices (73). For a condensed mesh, the results is the
simple one (19) quoted in the Overview.

We now consider a sequence of energy meshes, starting with the single-
point mesh, ε0, then adding ε1 in order to obtain the two-point mesh ε0, ε1,
then adding ε2 obtaining the three-point mesh ε0, ε1, ε2, a.s.o. Associated with
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these meshes we obtain a sequence of NMTO sets: the kinked-partial wave set,
χ(0) (r) , the LMTO set, χ(1) (r) , the QMTO set, χ(2) (r) , a.s.o. Working down-
wards, we thus always delete the point with the highest index. Equation (80) now
shows that H − εN may be viewed as the step-down operator and E(N) − εN as
the corresponding transfer matrix with respect to the order of the NMTO set.

In this sequence we may include the case N=0, provided that we define:

E(0) − ε0 ≡ −K (ε0) and χ(−1) (r) ≡ δ (r) . (82)

N + 1 successive step-down operations on the NMTO set thus yield:

(H − ε0) ... (H − εN ) χ (N) (r) = δ (r)
(
E(0) − ε0

)
...

(
E(N) − εN

)
which, first of all, tells us that one has to operate N times with ∇2 – that is,
with ∇2N – before getting to the non-smoothness of an NMTO. This is consistent
with the conclusion about kinks and triple-valuedness reached in the preceding
sub-section. Secondly, it tells us that the higher the N , the more spread out the
NMTOs; if we let r (M) denote the range of the E(M)-matrix, then the range of
the NMTO is roughly

∑N
M=0 r (M) .

The product of E(0) − ε0 and all the transfer matrices on the right-hand side
of the above equation is seen from (81) and (82) to be simply: −G [0...N ]−1

.
Hence, we have found the matrix equivalent of the elementary relation (78):

−G [0...N ]−1 =
(
E(0) − ε0

)(
E(1) − ε1

)
...

(
E(N) − εN

)
. (83)

The other way around: Recursive use of (83) with increasing N , will generate the
transfer matrices and will lead to the first equation (81). Note that although the
order of the arguments in the divided difference on the left-hand side is irrelevant,
the order of the factors on the right-hand side is not, since the transfer matrices
do not commute. That G [0...N ] is Hermitian, is not so obvious from (83) either.
Finally, we may note that G [0..n − 1, n+ 1..N ] is not defined by (83) but by
(148):

G [0..n − 1, n+ 1..N ] ≡ G [0...N − 1] + (εN − εn)G [0....N ] .

Relation (83) now gives the following form for the Lagrange weights (73):

L(N)
n =

(
E(n) − εn

)−1
(
E(0) − ε0

)
..
(
E(n) − εn

)
..
(
E(N) − εN

)
(εn − ε0) .. (εn − εn−1) (εn − εn+1) .. (εn − εN )

, (84)

and this is seen to pass over to the classical expression (146) for the Lagrange
coefficients if we substitute all energy matrices by the energy: E(M) → ε. This
correspondence between – on the one side – the set φ (ε, r) and the Lagrange
polynomial approximation (146) to its energy dependence (Fig. 1) and – on the
other side – the set χ(N) (r) expressed by (68) with the matrix form (84), is
conceptually very pleasing. What is not so obvious – but comforting – is that
the Hilbert space spanned by the NMTO set is invariant under energy-dependent
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linear transformations, φ̂ (ε, r) ≡ φ (ε, r)T (ε) , of the kinked partial waves. This
will be shown in a later section.

By taking matrix elements of (80), the transfer matrix may be expressed as:

E(N) − εN =
〈
χ(N) | χ(N−1)

〉−1 〈
χ(N) |H − εN |χ(N)

〉
. (85)

This holds also for N=0, provided that we take the value of χ(0) (r) at its scre-
ening sphere to be ϕ◦ a (ε, a) = 1 – as dictated by the 3-fold way – so that〈
χ(0) | χ(−1)

〉
= 1. The form (85) shows that the transfer matrices with N ≥ 1

are not Hermitian, but short ranged, as one may realize by recursion starting
from N=0. Finally, it should be remembered that the NMTOs considered sofar
have particular normalizations, which are not:

〈
χ(N) | χ(N)

〉
= 1, and so do the

transfer matrices. We shall return to this point.

Newton form. Instead of using the Lagrange form (149) to factorize the NMTO
(70), we may use the divided-difference expression (150). With the substitutions:
f (ε) → G (ε) and g (ε) → φ (ε, r) , we obtain the Newton form for the NMTO
which most clearly exhibits the step-down property (80):

χ(N) (r) =
∑0

M=N
φ ([M..N ] , r)G [0..M ]G [0...N ]−1

= φN (r) + φ ([N − 1, N ] , r)
(
E(N) − εN

)
+ .. (86)

..+ φ ([0...N ] , r)
(
E(1) − ε1

)
..
(
E(N) − εN

)
,

since, from (56) and (79),

(H − εN )φN (r) = −δN,0δ (r)K0,

(H − εN )φ ([M...N ] , r) = φ ([M..N − 1] , r) . (87)

We thus realize that the energy matrices in the Newton series for the NMTO
set are the matrices for stepping down to the sets of lower order. For some
purposes, the ’reversed’ series, obtained from (150) with f (ε) → φ (ε, r)G (ε)
and g (ε) → G (ε):

χ(N) (r) =
∑N

M=0
φ ([0..M ] , r)G [M..N ]G [0...N ]−1

= φ0 (r) + φ ([01] , r)
(
E(N) − ε0

)
+ .. (88)

..+ φ ([0...N ] , r)
(
E(1) − εN−1

)
..
(
E(N) − ε0

)
,

is more convenient. This expression clearly exhibits the correspondence with the
Newton polynomial approximation (147) to the energy dependence of φ (ε, r) .
Conceptually, a divided-difference series is more desirable than the Lagrange
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series, because the Lagrange weights (84) ’fluctuate wildly’ as a function of n,
taken in the order of monotonically increasing energies.

For a condensed mesh, (86) and (88) obviously reduce to one-and-the-same
matrix-equivalent of the Taylor series for φ (ε, r) :

χ(N) (r) → φ (r) + φ̇ (r)
(
E(N) − εν

)
+ ..

..+
1
N !

(N)
φ (r)

(
E(1) − εν

)
..
(
E(N) − εν

)
,

and (87) becomes:

(H − εν)φ (r) = −δN,0δ (r)K, (H − εν)

(N−M)
φ (r)

(N − M)!
=

(N−M−1)
φ (r)

(N − M − 1)!
.

Readers used to the LMTO-ASA method, where – according to (12) – the
KKR matrix is basically the two-center TB Hamiltonian, may not like the
thought of having to differentiate its inverse, the Green matrix, with respect
to energy. (The computer seems to work well with the formalism based on the
Green matrix). Such readers might therefore prefer an NMTO formalism in terms
of kink matrices. For a discrete mesh many ugly relations exist, but the one re-
lation which is conceptually pleasing is the following:

0 = (89)

K0 +K [01]
(
E(N) − ε0

)
+ ..+K [0..N ]

(
E(1) − εN−1

)
..
(
E(N) − ε0

)
,

because it looks like the matrix form of the secular KKR equation: |K (ε)| =
0. This relation may be obtained by taking the Nth divided difference of the
equation: K (ε)G (ε) ≡ 1, using the binomial expression (150) for a product like
in (88), but with K (ε) substituted for φ (ε, r) , and multiplying the result from
the right by G [0...N ]−1

. To find the transfer matrices from (89), we may solve
for E(N) − ε0 and do recursion starting from N=1. The results are:

E(1) − ε0 = −K [01]−1
K0 → −K̇−1K ,

E(2) − ε0 = −
(
K [01] +K [012]

(
E(1) − ε1

))−1
K0 (90)

→ −
(
K̇ − K̈K̇−1K/2

)−1
K,

a.s.o. These low-N expressions are reasonably simple. For N=1, the discrete
form is seen to be identical with (74) and, for a condensed mesh, it reduces
to the well-known expression for the 3rd-generation LMTO. We conclude that
the energy matrices, E(M), are well-behaved functions of the kink matrix and
its divided differences, up to and including Mth order. With M increasing, the
corresponding expressions for E(M) however become more and more compli-
cated. The simplest expression for E(M) is therefore (81), the one which uses
G-language.
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3.2 Variational NMTO Method

The NMTO set has been defined through (69) and (70) in such a way that
its leading errors are proportional to (ε − ε0) .. (ε − εN ). By virtue of the va-
riational principle, solution of the generalized eigenvalue problem (5) with this
basis set will therefore provide one-electron energies, εi, with a leading error
∝ (εi − ε0)

2
.. (εi − εN )2 . The error of the wave function will of course still be

of order (εi − ε0) .. (εi − εN ) , but that is usually all right because, as mentioned
at the beginning of the present section, the MTO scheme is based on the facto-
rization: γ (ε, r) = φ (ε, r)G (ε) , where φ (ε, r) has a smooth energy dependence
and G (ε) provides the poles at the one-electron energies.

Hamiltonian and overlap matrices. For a variational calculation, we need
expressions for the NMTO overlap and Hamiltonian matrices,

〈
χ(N) | χ(N)

〉
and〈

χ(N) |H|χ(N)
〉
. From (69), the Nth divided difference of the contracted Green

function (58) is:

γ(N) ([0..N ] , r) = χ(N) (r)G [0..N ] =
N∑
n=0

φn (r) Gn∏N
m=0, �=n (εn − εm)

(91)

and using now (63), we obtain for the integral over the product of the Mth and
Nth divided differences of contracted Green functions:

〈γ [0...M ] | γ [0....N ]〉 =
N∑
n=0

M∑
n′=0

−G [n, n′]
N∏

m=0, �=n
(εn − εm)

M∏
m′=0, �=n′

(εn′ − εm′)

= −G [[0...M ] ..N ] → −
(M+N+1)

G

(M +N + 1)!
. (92)

This is simply the negative of the (M +N + 1)st Hermite divided difference
(152) of the Green matrix, as proved in Eq. (160) in the Appendix!

Note that the meaning of a matrix equation like (63) is:

〈γRL (εn) | γR′L′ (εn′)〉 = −GRL,R′L′ [n, n′]
= −GRL,R′L′ [n′, n] = 〈γRL (εn′) | γR′L′ (εn)〉 .

In matrix notation, that is: 〈γn | γn′〉 = 〈γn′ | γn〉 , and not: 〈γn | γn′〉 = 〈γn′ | γn〉∗
.

Even without the symmetry of the matrix G [n, n′] with respect to the exchange
of n and n′, it is of course always true that

〈γRL (εn) | γR′L′ (εn′)〉 = 〈γR′L′ (εn′) | γRL (εn)〉∗
,

i.e. that a matrix like 〈γn | γn′〉 is Hermitian: 〈γn | γn′〉 = 〈γn′ | γn〉†
. The

point is, that n is an argument – not an index – of a matrix. Similarly, N and M
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are not matrix indices in (92). Since the first expression (92) is symmetric under
exchange of N and M, because G [n, n′] is symmetric, we may choose M ≤ N,
and this has in fact been done in the second expression.

From (79) and (92), we now see that the Hamiltonian matrix between the
Nth divided differences of contracted Green functions becomes:

〈γ [0...N ] |H − εN | γ [0...N ]〉 = 〈γ [0...N ] | γ [0..N − 1]〉

= −G [[0..N − 1]N ] → −
(2N)
G

(2N)!
. (93)

Hence, we have arrived at the important results: The NMTO overlap matrix may
be expressed in terms of the Nth-order divided difference and the (2N + 1)st
Hermite divided difference of the Green matrix as:〈

χ(N) | χ(N)
〉

= −G [0...N ]−1
G [[0...N ]] G [0...N ]−1

, (94)

where the – even simpler – result for a condensed mesh was quoted in the Over-
view (20). The Hermite derivative G [[0, ..., N ]] is thus negative definite. The
NMTO Hamiltonian matrix may be expressed analogously, in terms of a 2Nth-
order Hermite divided difference:〈

χ(N) |H − εN |χ(N)
〉
= −G [0...N ]−1

G [[0..N − 1]N ] G [0...N ]−1
. (95)

Here again, the result given in (20) for a condensed mesh is even simpler. The
NMTO Green function is〈

χ(N) |z − H|χ(N)
〉−1

=

G [0...N ] {G [[0..N − 1]N ] − (z − εN )G [[0...N ]]}−1
G [0...N ]

Expressions (94) and (95) for the NMTO overlap and Hamiltonian matrices
are not only simple and beautiful, but they also offer sweet coding and speedy
computation. For a crystal, and transforming to k-representation, one may even
use the representation of contracted Green functions where the overlap and Ha-
miltonian matrices – according to (92) and (93) – are merely −G [[0...N ]] and
−G [[0..N − 1]N ] . In Section 4 we shall see that an energy-dependent linear
transformation of the kinked partial waves does not change the Hilbert space
spanned by an energy-independent NMTO set – but only the individual basis
functions. Therefore, we might also use kinked partial waves φα (ε, r) and the
Green matrix Gα (ε) with phase-shift normalization.

In summary: The variational NMTO scheme requires computation of the kink
matrix and its first energy derivative at theN+1 mesh points. It delivers energies
and wave functions which are correct to order 2N + 1 and N , respectively. This
lower accuracy of the wave functions is appropriate because the kinked partial
waves are rather smooth functions of energy. For the computation of the ∂̇n’s
entering K̇n ≡ a

(
Ḃn − ∂̇n

)
, radial normalization-integrals should be used.
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As an example, for the LMTO method, the Hamiltonian and overlap matrices
are respectively:〈

χ(1) |H − ε1|χ(1)
〉

= −G [01]−1
G [[0] 1] G [01]−1

= (ε0 − ε1) (G0 − G1)
−1

(
−Ġ0 +G [01]

)
(G0 − G1)

−1 (96)

→ −Ġ−1 G̈

2!
Ġ−1 = −K +KK̇−1 K̈

2!
K̇−1K,

and 〈
χ(1) | χ(1)

〉
= −G [01]−1

G [[01]] G [01]−1

= (G0 − G1)
−1

(
−Ġ0 + 2G [01] − Ġ1

)
(G0 − G1)

−1 (97)

→ −Ġ−1
...
G

3!
Ġ−1 = K̇ − KK̇−1 K̈

2!
− K̈

2!
K̇−1K +KK̇−1

...
K

3!
K̇−1K.

The result for a condensed mesh in terms of the kink matrix and its first three
energy derivatives is seen to be almost identical to the one (16), which in pre-
vious LMTO generations required the ASA. To get exactly to (16), one needs to
transform to the LMTO set: χ̂(1) (r) ≡ χ(1) (r) K̇−1/2, which in fact corresponds
to a Löwdin orthonormalization of the 0th-order set. We shall return to this mat-
ter in Sect. 6. From the above relations we realize that – even for a condensed
mesh and N as low as 1 – G-language is far simpler than K-language.

Orthonormal NMTOs. In many cases one would like to work with a repre-
sentation of orthonormal NMTOs, which preserves the RL-character of each
NMTO. In order to arrive at this, we should – in the language of Löwdin –
perform a symmetrical orthonormalization of the NMTO set. According to (94)
such a representation is obtained by the following transformation:

χ̌(N) (r) = χ(N) (r) G [0...N ]
√

−G [[0...N ]]
−1

, (98)

because it yields:〈
χ̌(N) | χ̌(N)

〉
= −

√
−G [[0...N ]]

−1†
G [[0...N ]]

√
−G [[0...N ]]

−1
= 1.

Note that this means: −G [[0..N ]] =
√

−G [[0..N ]]
†√−G [[0..N ]]. In this ortho-

normal representation, the Hamiltonian matrix becomes〈
χ̌(N) |H − εN | χ̌(N)

〉
= −

√
−G [[0...N ]]

−1 †
× (99)

G [[0..N − 1]N ]
√

−G [[0...N ]]
−1

.

To find an efficient way to compute the square root of the Hermitian, positive
definite matrix −G [[0...N ]] may be a problem. Of course one may diagonalize
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the matrix, take the square root of the eigenvalues, and then back-transform,
but this is time consuming. Cholesky decomposition is a better alternative, but
that usually amounts to staying in the original representation. Löwdin orthogo-
nalization works if the set is nearly orthogonal, because then the overlap matrix
is nearly diagonal, and Löwdin’s solution was to normalize the matrix such that
it becomes 1 along the diagonal and then expand in the off-diagonal part, O :

√
1 +O

−1
= 1 − 1

2
O +

3
8
O2 − ... (100)

This should work for the NMTO overlap matrix (94) when the NMTOs are nearly
orthogonal, but it hardly works for −G [[0...N ]] . There is therefore no advantage
in pulling out the factor G [0...N ] , on the contrary. The other way around: In
order to take the square root of −G [[0...N ]] , we should find a transformation,
T, such that T †G [[0...N ]]T is nearly diagonal, and then perform the Löwdin
orthonormalization on the latter matrix. We shall return to this problem in
Sect. 5.

One-orbital model: switching behavior of H(N), L(N)
n , and the varia-

tional energy. Our development of the NMTO formalism has been focused
on its matrix aspects and, through the introduction of energy matrices and by
pointing to the correspondence with classical Lagrange and Newton interpola-
tion of the energy-dependent kinked partial waves, we have tried to make the
reader accept the seemingly uncomfortable fact, that the quantities of interest
do arise by energy differentiations of a Green matrix.

Let us now illustrate the Green-function aspects by considering the 1 × 1
Green matrix (77) for one, normalized orbital: χ̌(N) (r) = Ψj (r) with

〈∣∣χ̌(N)
∣∣2〉 =

1. Note that in this model, j runs over the one-electron energies, which is a dif-
ferent set – with much larger spacing – than the energy mesh whose points
are denoted n and m. For a crystal, and using Bloch-symmetrized NMTOs and
Green matrices, χ̌(N) (k, r) and Ǧ (ε,k) , this would be an s-band model with j
being the radial quantum number. We want the NMTO to describe the i-band
and therefore choose the mesh between εi−1 (k) and εi+1 (k) . In the following
we shall drop the Bloch vector and not necessarily consider a crystal.

We first demonstrate how Ě(N) ≡ H(N) – in this case a 1×1 Hamiltonian (see
Sect.5) – expressed in terms of ratios of energy derivatives of a Green function,
with its singular behavior, produces correct results for the one-electron energy
and how, when the mesh is swept over a large energy interval, H(N) switches
between bands with different radial quantum numbers. From (81) and (78) we
get:

H(N) − εN =
Ǧ [0..N − 1]
Ǧ [0...N ]

= (εi − εN )

1 +
∑
j �=i

∏N−1
m=0

εi−εm

εj−εm

1 +
∑
j �=i

∏N
m=0

εi−εm

εj−εm

.
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Fig. 6. Switching behavior of E(N) (εν) ≡ H(N) (εν) for the orthonormal one-orbital
model defined by Eq. (77) with 4 radial levels: εj = 0, 1, 2, 3.
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Hence, for the model and an energy mesh with N + 1 points, H(N) equals εi
to order N, with an error proportional to (εi − ε0) .. (εi − εN ) , which for a con-
densed mesh becomes (εi − εν)

N+1
. In Fig. 6 we show H(N) (εν) for N = 1 to

6, computed from the above expression for a four-level model with εj = 0, 1, 2,
and 3, and a condensed mesh. We see that H(N) (εν) behaves as it should: It
switches from one level to the next, with the plateau around each level flattening
out as N increases. For N odd, the switching-curve is step-like and, for N even,
the switching is via −∞ → +∞. This comes from the ability of the denominator
in the expression for H(N) to be zero when N+1 is odd. An energy-independent
orbital, as considered in the present model, can of course only describe one band.
With the NMTO defined for a mesh condensed onto a chosen energy εν , we want
to describe the band near εν as well as possible – also if the distance to the next
band is small – and with a result which over a large region is insensitive to the
choice of εν . In a multi-orbital calculation, we should fold down those channels
which are switching in the energy range of interest into the screened spherical
waves. This will remove schizophrenic members of the NMTO set and prevent
the possible occurrence of ghost bands.

In the one-orbital model, the estimate of a true, normalized wave function,
φ̌ (εi, r) , is the Nth-order muffin-tin orbital: χ̌(N) (r) =

∑N
n φ̌n (r)L

(N)
n . If we

now use (77) and (78) to evaluate expression (73) for the Lagrange weights, we
find:

L(N)
n =

∑
j

1
εj−εn∑

j

1
εj−εn

∏N
m=0, �=n

εn−εm

εj−εm

= l(N)
n (εi)

1 +
∑
j �=i

εi−εn

εj−εn

1 +
∑
j �=i

∏N
m=0

εi−εm

εj−εm

,

where l
(N)
n (ε) is the Lagrange polynomial (146) of degree N . We have therefore

reached the conclusion that – in our orthonormal model, and to leading order –
the wave function is the energy-dependent MTO, φ̌ (ε, r) , Lagrange interpolated
over the (N+1)-point mesh.

Since the error of an NMTO set is of order N+1, use of the variational
principle will reduce the error of the one-electron energies, εi, from that of the
highest transfer matrix, H(N) − εN , to order 2(N+1). The variational energies
are thus correct to order 2N+1. For a condensed mesh, this also follows trivially
from (94)-(95), which show that the variational energy, with respect to εν , is:〈

χ(N) |H − εν |χ(N)
〉〈

χ(N) | χ(N)
〉 =

(2N)
G

(2N)!

/ (2N+1)
G

(2N + 1)!
= H(2N+1) − εν .

The odd-ordered switching curves H(1) (εν) , H(3) (εν) , and H(5) (εν) shown in
the left-hand panel of Fig. 6 are thus the variational estimates resulting from
the use of respectively the 0th, 1st, and 2nd-order NMTO, that is, the MTO,
the LMTO, and the QMTO. These curves are well behaved.

The expression for the variational energy in the one-band model can be eva-
luated exactly, also for a discrete mesh, and yields a transparent result. We use
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the double-mesh procedure explained in the Appendix after (152), and let the
differences εn ≡ εn+N+1 − εn shrink to zero. From (78) we then get:

Ǧ [[0...N ]] = −
∑
j

1∏N
m=0 (εj − εm)2

, (101)

Ǧ [[0..N − 1]N ] = −
∑
j

1

(εj − εN )
∏N−1

m=0 (εj − εm)2
,

and for the variational energy (99):

〈
χ̌(N) |H − εN | χ̌(N)

〉
= (εi − εN )

1 +
∑
j �=i

εi−εN

εj−εN

∏N−1
m=0

(
εi−εm

εj−εm

)2

1 +
∑
j �=i

∏N
m=0

(
εi−εm

εj−εm

)2 ,

which of course agrees with the variational principle.
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Fig. 7. Minimal-basis LMTO energy bands (dashed) of GaAs for two different choices
of the screening-radii compared to the exact KKR band structure (solid). In the left-
hand panel all screening radii were ∼ 0.8t, while in the right-hand panel the Ga d
radius was reduced to the radius of the Ga 3d core [24]. See text.

Treating semi-core and excited states: GaAs. An accurate description of
the cohesive properties of GaAs requires a good band-structure calculation of the
five Ga 3d10 semi-core, the As 4s2-band, and the three As 4p2 Ga 4sp3 valence
bands. If also the four lowest conduction bands must be described, one is faced
with the problem of computing a band structure containing extremely narrow
as well as wide bands over a 20 eV-region. To do this ab initio with a minimal
Ga spd As sp basis set (13 orbitals per GaAs), has hitherto not been possible.
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With 1st and 2nd-generation LMTO-ASA methods one would normally use
Rl-dependent εν ’s and employ a 36-orbital-per-GaAs basis, consisting of the spd
LMTOs centered on the Ga, the As, and the interstitial sites in the zincblende
structure. The conduction-band errors arising from the choice κ2=0 are so large
that the combined correction is needed. Downfolding works for the p and d
orbitals on the two interstitial spheres, but not for the interstitial s and the As
d orbitals. With the 3rd-generation LMTO method, downfolding works much
better, but the energy window is now screening dependent, and the use of Rl-
dependent εν ’s is avoided because it messes up the formalism.

In Fig. 7 we show – in full lines – the exact (up to 7eV) LDA band structure
calculated by the screened KKR method, i.e. by the 3rd-generation LMTO me-
thod using many energy panels and the Ga spd As sp basis. The five Ga 3d10

semi-core bands are at – 15 eV, the As 4s2-band is around – 12 eV, and the three
As 4p2 Ga 4sp3 valence bands extend from – 7 to 0 eV. Above the gap, there
are the four As 4p4 Ga 4sp3 conduction bands. The dotted lines give results of
3rd-generation LMTO variational calculations with a condensed mesh and an εν
in the middle of the three valence bands. In the left-hand
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Fig. 8. Mean error in each of the three types of occupied valence bands in GaAs
calculated with the LMTO and QMTO methods as a function of the expansion energy
εν for a condensed mesh [24]. See Fig. 7 and text.

figure, the screening-sphere radii for the active Ga spd and As sp channels were
chosen at the Ga and As default values, respectively 0.82t and 0.78t, where t is
half the nearest-neighbor distance. We see that the entire valence-band structure
is distorted by hybridization with Ga d ghost bands. The dotted bands in the
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right-hand figure result after changing the Ga d screening-sphere radius to 0.35t,
which is close to the actual radius of the Ga 3d core. Now, the band structure
looks reasonable: The valence bands near εν are perfect, but the Ga 3d bands
are nearly 0.5 eV to high [24].

That the variational LMTO method with a minimal basis and a single εν
cannot describe all occupied states of GaAs with sufficient accuracy, becomes
even more obvious from the left-hand side of Fig. 8, where we show – as functions
of εν – the average errors of the five Ga 3d bands, those of the As 4s band, and
those of the three valence bands. The error ∝ (εi (k) − εν)

4 of the variational
energy is clearly visible for the narrow Ga 3d and As 4s bands. With εν ’s in
a narrow range around – 11 eV, the variational error in the sum of the one-
electron energies gets down to about 250 meV per GaAs. On the right-hand
side, we show the same quantities, but obtained with the QMTO method. Now
the errors ∝ (εi (k) − εν)

6 are acceptable, and there is a comfortable range of
εν ’s around – 10 eV where the error in the sum of the one-electron energies
does not exceed 25 meV per GaAs. The screening-sphere radii chosen in these
calculations [24] were: 0.93t, 1.05t, and 0.35t for respectively Ga s, p, and d, and
0.89t and 1.00t for respectively As s and p.
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Fig. 9. Like Fig. 8, but calculated using discrete meshes and as functions of the position
of the last energy point. The first energy points were fixed at the positions indicated
on the abscissa [24]. See text.

In Fig. 9 we show the same kind of results, but this time obtained with
the discrete (Lagrange) LMTO and QMTO methods. The size of the basis set,
the screening-sphere radii, etc., were as in Fig. 8. For the LMTO method, ε0
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was fixed at the position of the Ga 3d bands and the figure shows the result
of varying the position ε1 of the other mesh point. The quadratic dependence
on ε1 of the variational energy-error ∝ (εi (k) − ε0)

2 (εi (k) − ε1)
2 is clearly re-

cognized. Compared with the results of the tangent LMTO method shown in
the previous figure, those of the chord-LMTO are far superior: With ε1’s aro-
und – 5 eV, the variational error in the sum of the one-electron energies gets
down to about 30 meV per GaAs, and yet, for N given, the method employing
a discrete mesh is computationally simpler than the one employing a conden-
sed mesh. On the right-hand side of the figure, we show the QMTO results
as functions of ε2, with ε0 fixed at the Ga 3d position, and ε1 at the As 4s
position. Here again, the quadratic dependence on ε2 of the variational energy-
error ∝ (εi (k) − ε0)

2 (εi (k) − ε1)
2 (εi (k) − ε2)

2 may be seen. We realize, that
with this discrete QMTO method, meV-accuracy for the sum of the one-electron
energies can be reached.

Finally, in Fig 10 we show the GaAs band structure in a wide (40 eV) range
around the gap. Further conduction bands now appear above 7 eV and we needed
to employ a basis consisting of the Ga spd As spdf 2E s QMTOs. ε0 was chosen
at the Ga 3d position, ε1 near the gap, and ε2 10 eV above the gap. The results
of this discrete QMTO calculation shown by the dotted curves agree superbly
with those of a multi-panel LMTO (=KKR) calculation shown in full line [24].
This proves the power of the 3rd-generation NMTO method.

Massive downfolding: CaCuO2. An increasingly important field of research
is the electronic structure of real materials with strongly correlated conduction
electrons. Within a given class of materials, fine-tuning of the interesting pro-
perties will require detailed knowledge of the single-electron part – the orbitals,
hopping integrals and basic on-site terms – of the correlated Hamiltonian. In the
previous review [20] of the 3rd-generation 0th- and 1st-order differential MTO
method, we demonstrated for the idealized high-temperature superconductor,
CaCuO2 with dimpled CuO2 planes, how one could extract low-energy, few-
band Hamiltonians by massive downfolding; in the extreme limit: Downfolding
to one Cu dx2−y2 orbital per Cu site [22,23]. Let us now reconsider this example
in the light of the new NMTO methods.

In Fig. 11 the full lines in all four parts show the (same) full LDA band
structure in a ±3 eV region around the Fermi level, which for the doping levels
of interests would be near the energy −0.8 eV of the so-called extended saddle-
point at X. The conduction band has mostly O-Cu anti-bonding pdσ-character
(O px – Cu dx2−y2) with the bonding partner lying 10 eV lower in energy. The
bottom of the conduction band is seen to cross and hybridize with a multitude of
O-Cu pdπ-bands lying below – 1.2 eV. The top of the conduction band hybridizes
strongly with a broad O-Ca bonding pdπ (O px – Ca dxy) band near A. In
this situation, one clearly does not want to use the rather ill-defined and very
long-ranged Wannier orbital for describing the low-energy electronic structure.
Rather, one wants an orbital which describes the band (including its dependence
on other relevant low-energy excitations such as spin-fluctuations and phonons)
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Fig. 10. Energy bands of GaAs calculated with the QMTO method and the energy
mesh indicated on the right-hand side (dashed) as compared with the exact KKR result
(solid) [24]. See text.

in the ±200meV range around εF , that is an NMTO with all channels, except
Cu dx2−y2 , downfolded and with as short a range as possible. The four dotted
bands shown in each of the sub-figures result from such calculations [24]. In all
cases, the screening-sphere radius of Cu dx2−y2 was taken to be 0.62t. The upper
figures illustrate a problem with the 3rd-generation tangent LMTO method: If
εν is taken where we want it to be, at the −0.8 eV saddle-point deep down in the
anti-bonding pdσ-band, then the method develops a schizophrenia near the top
of the band, above 1 eV and near M, which is apparently sufficiently far away
from εν that the LMTO ’might consider’ describing the bonding rather than the
anti-bonding state.
The resulting orbital has very long range due to the high Fourier components
caused by the schizophrenia and, as a result, we are forced to take εν at a higher
energy than we actually want. With εν= – 0.3 eV, we still get long range as
seen in the upper left-hand figure, and in order to cure that problem we need to
go to εν=+0.3 eV, but then the description of the bottom of the anti-bonding
band, the extended saddle-point in particular, has substantially deteriorated. In
the lower left-hand figure we have now switched from the tangent to the chord
LMTO, and that is seen to help considerably. Finally, the lower right-hand figure
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Fig. 11. Conduction band of CaCuO2 calculated by massive downfolding to a single
Cu x2 − y2 NMTO (dotted) compared with the full band structure (solid) [24]. See
text.

presents what might be called an ’overkill’: We have used the discrete CMTO
(N=3) method, and the agreement with the exact result is superb.

Using integrals of divided differences of MTOs. In all previous derivations
of the variational LMTO method, the LMTO was expressed as a matrix Taylor
series (1) and the Hamiltonian and overlap matrices (7) were worked out using
expressions (12) for

〈
φ | φ̇

〉
and

〈
φ̇ | φ̇

〉
.

The same may be done for the general, discrete NMTO method, although the
number of terms in the resulting series increases quadratically with N . For this,
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we first use a divided-difference form – such as (88) – for the NMTO and then
need expressions for the overlap integrals, 〈φ [0..N ] | φ [0..M ]〉 , and Hamiltoni-
ans, 〈φ [0..N ] |H|φ [0..M ]〉 , between divided differences of kinked partial waves.
Since expressions (62) and (63) are formally equivalent, we find that, analogous
to (92),

〈φ [0..M ] | φ [0...N ]〉 = 〈φ [0...N ] | φ [0..M ]〉 = K [[0..M ] .N ] (102)

→
〈 (M)

φ

M !
|

(N)
φ

N !

〉
=

〈 (N)
φ

N !
|

(M)
φ

M !

〉
=

(M+N+1)
K

(M +N + 1)!
,

where we have assumed M ≤ N. From this result for M = N, it follows that the
odd-ordered Hermite divided differences of the kink matrix are positive definite.
For a contracted mesh, this overlap matrix is seen to depend only on M +N.

For the matrix elements of the Hamiltonian we must use:

〈φ [0..M ] |H − εn|φ [0...N ]〉 = 〈φ [0..M ] | φ [0..n − 1, n+ 1..N ]〉

=
{
K [[0..n − 1, n+ 1..min (M,N)]n..max (M,N)]
K [[0..min (M,N)] ..n − 1, n+ 1..max (M,N)] (103)

→
〈 (M)

φ

M !
|H − εν |

(N)
φ

N !

〉
=

〈 (M)
φ

M !
|

(N−1)
φ

(N − 1)!

〉
=

(M+N)
K

(M +N)!
.

The upper and lower results on the second line correspond to n � min (M,N).
Here again, for a condensed mesh the Hamiltonian matrix depends only on M +
N.

The resulting expressions for
〈
χ(N) | χ(N)

〉
and

〈
χ(N) |H − εn|χ(N)

〉
contain

the above-mentioned integrals times products of
(
E(N−M+1) − εM−1

)
-matrices.

These expressions are by far not as explicit as equations (94) and (95), and they
are more complicated for a discrete than for a condensed mesh. We shall now
consider a more useful application of (102)-(103).

Charge density and total energy: Si phase diagram. The wave function
obtained from a variational calculation is: Ψi (r) = χ (r) ci , where we have drop-
ped the superscript (N) on the NMTO. The eigen(column)vector, ci, of the gene-
ralized eigenvalue equation (5) should be normalized according to: c†

i 〈χ | χ〉 ci′ =
δii′ , or – regarding cRL,i as a matrix – according to: c† 〈χ | χ〉 c = 1. The charge
density is now given by (18), which to a very good approximation is (64) with the
energy-dependent wave functions in expressions (65)-(66) substituted by their
matrix Lagrange or Newton series. The computer code would use the Lagrange
form:

ρ (r) = χ (r) cc†χ (r)† =
∑
nn′

φn (r) Lncc
†L†

n′ φn′ (r)† ,
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so that in this case, the density-of-states matrix Γ (ε) in (67) should be substi-
tuted by:

Γnn′ ≡ Ln

(
occ∑
i

cic
†
i

)
L†
n′ . (104)

Equations (65)-(66) then become:

ρψ (r) ≡
∑
RR′

∑
LL′

∑
nn′

ψRL,n (rR) ΓRL,n;R′L′,n′ ψR′L′,n′ (rR′)∗ , (105)

ρϕR (r) =
∑
LL′

YL (r̂)Y ∗
L′ (r̂)

∑
nn′

ϕRl,n (r) ΓRL,n;RL′,n′ ϕRl′,n′ (r) ,

ρϕ
◦

R (r) =
∑
LL′

YL (r̂)Y ∗
L′ (r̂)

∑
nn′

ϕ◦
Rl,n (r) ΓRL,n;RL′,n′ ϕ◦

Rl′,n′ (r) .

If one feels that, with the variational NMTO method, the KKR equations have
been solved with sufficient accuracy, then one may even use (65)-(67) as they
stand, and interpolate the energy dependences of the wave functions using the
classical Lagrange or Newton methods (146) and (147).

In order to solve Poisson’s equation and to compute the Coulomb- and
exchange-correlation integrals for the total energy and forces, we need to fit the
charge density by suitable functions. The properties of ρ(r) to which we have
most easy access are its spherical-harmonics expansions around the various sites.
For the fitting we therefore choose atom-centered NMTO-like functions which
have the following advantages: (1) they are the unitary functions for continuous
fitting at non-touching a-spheres, (2) they are localized, (3) we know the result
of operating on them with ∇2, and (4) the integral of any product of two such
functions is the energy derivative of a kink matrix (102)-(103).

Our fitting procedure [47] can be outlined as follows: We first place a set
of screening spheres around each atomic site. This defines our screened Hankel
functions (29) and divides space into non overlapping intra-sphere parts and an
interstitial part. It is not necessary to place screening spheres at interstitial si-
tes, even though the resulting interstitial can be very large. In the intra-sphere
region we use a spherical-harmonics expansion of the charge density, with the
components ρRL(r) known on a radial mesh. As the screening spheres are rela-
tively small this summation can be truncated at l=3 or 4. In the interstitial we
expand in the screened Hankel functions, naRL (ε, rR) , normalized as in (45) and
with 3 different, negative energies, of which the lowest is about 4 times the work
function, that is:

ρ(r) ≈
2∑

n=0

∑
RL

naRL (εn, rR) λRL;n =
∑
RL

n̆aRL (rR)µRL + (106)

∑
RL

(
naRL (rR) ρRL (a) + naRL ([01] , rR)

∑
R′L′

XRL,R′L′ ρR′L′

)
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Fig. 12. Total energy of Si as a function of the atomic volume for different structures
calculated with the full-potential LMTO method [34] and with the present full-charge
scheme [49,47,48]. See text.

for all rR ≥ aRL. With three energies, we can in principle fit continuously with
continuous 1st and 2nd derivatives. However, in practice it is difficult to compute
the 2nd radial derivatives of the high-l components of the charge density. We
therefore determine the matrix X in such a way that the fitting is continuous
and once differentiable, that is: X = Ba [01]−1 (∂ {ρ (a)} − Ba

0 ) . The functions
n̆aRL (rR) in (106) are those linear combinations of the three na (εn, r)’s whose
value and radial slope vanish in all channels at the screening spheres. These
functions therefore peak in the interstitial region and their coefficients µRL are
determined by a least squares fit in the region interstitial to the MT-spheres,
by sampling the full charge (105), as well as the expansion (106) at a set of
pseudo-random points. Once the expansion is obtained, it is very easy to solve
Poisson’s equation. In the intra-sphere part this is done numerically and in the
interstitial analytically by virtue of the screened Hankel functions solving the
wave equation. The same expansion procedure can be applied to the exchange-
correlation energy density ε(r) and potential µ(r). This gives a full potential. The
total energy Etot is also easy to evaluate. The interstitial part of the integrals
reduces simply to a summation over Hermite divided differences of the slope
matrix.

We have applied this procedure to look at the total energy of various pos-
sible structures for silicon [49]. For each structure we perform a standard self
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consistent LMTO-ASA calculation. In the last iteration an expansion of the full
charge density is made and Etot evaluated correctly. The result is shown in Fig.
12 where, for comparison, we show the full-potential LMTO result from Ref.
[34].
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Fig. 13. Rms error of the valence-band energies in diamond-structured Si as a function
of the overlap in the atom-centered MT-potential [42,43]. See text.

Overlapping MT-potential: Si without empty spheres. The phase dia-
gram of Si just shown was calculated using LMTOs defined for MT-potentials
with empty spheres. We now consider the possibility offered by Eq. (28) of allo-
wing the atom-centered sphere a substantial overlap – like the 50% radial overlap
shown in Figs. 2-5 – and, hence, of getting rid of the empty spheres.

The first question is: How to construct such a potential? Our answer is [42]
that the potential should be constructed such as to minimize the mean squared
deviation of the valence-band energies from the ones for the full potential. From
this condition, it then follows that the overlapping MT-potential,

∑
R v (rR) ,

should be the least-squares approximation to the full-potential, V (r), weigh-
ted with the valence charge density. This yields a set of coupled equations for
the shape, f (r) ≡ v (r) − g, and the zero, g, of the MT-potential. The equa-
tion which arises from requiring stationarity with respect to δg is of course:∫
(V −

∑
v) ρd3r = 0, and it means that the error in the sum of the valence-

band energies should vanish to leading order. The other equations, which arise
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by requiring stationarity with respect to δf (r) , are coupled integral equations,
which are complicated due to the presence of the charge-density weighting. Ta-
king the charge density to be constant in space, corresponds to minimizing the
mean squared energy-deviation for the entire spectrum, rather than merely for
the valence band. Now, in our present implementation, we only took the spatial
behavior of the charge density into account in the δg-equation. The resulting
potentials for diamond-structured Si were shown in Figs. 10 and 11 of Ref. [20].
We have recently succeeded in obtaining the overlapping MT potential from the
full potential obtained from the charge density (106) [43], but in the present
paper we shall only show results obtained by taking the full potential to be the
Si+E ASA potential – like in Ref. [20].
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Fig. 14. Band structure of Si calculated with the 3rd-generation LMTO method for the
self-consistent Si+E MT-potential (dashed) and for the Si-centered, 60%-overlapping
MT-approximation to it (solid). The latter calculation included the correction for the
kinetic-energy error Eq. (28) in the LMTO Hamiltonian, and the value of the MT-zero
was adjusted in such a way that the average energy of the valence band was correct.
Hence, the solid band structure corresponds to the last point on the curve marked
’ideal’ in Fig. 13 [42,43]. See text.
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Fig. 13 shows three different results for the rms error of the valence-band
energy as a function of the linear overlap, ω ≡ (s/t)−1. For the overlap increasing
up to about 30%, the rms error falls in all cases, simply because the overlapping
MT-potential becomes an increasingly better approximation to the full potential.
Without any overlap correction, the kinetic-energy error (28), which is of second
order in the potential overlap, initially rises proportional to v (s)2 ω4 [20], and
this is seen to limit the maximum overlap to about 30%. We may, however, use
the LMTO equivalent [43] of Eq. (28) to correct each band energy, εi (k) , and the
results are shown by the two other curves. The dashed curve – marked ’present
technique’ – uses the δg-equation as given above, whereas the ’ideal’ curve was
obtained by adjusting g – iteratively, because g enters the δf (r) equations – to
have the mean error of the valence-band energy vanish exactly. It is possible to
improve upon the ’present technique’ without knowing the valence-band energy
a priori, and we are currently including charge-density weighting in the δf (r)-
equations. This makes the curve flatten out – like the one marked ’ideal’ [43].

The solid curves in Fig. 14 show the Si band structure obtained with the
60% overlapping MT-potential, including the LMTO overlap correction, and
determining g to yield vanishing mean error of the valence band. The dotted
curve is the ’exact’ result as obtained with a (3rd-generation) LMTO calculation
for the Si+E potential. The errors seen in the valence band are certainly no larger
than 30 meV, but those in the conduction band are larger.

4 Energy-Dependent Linear Transformations

If one considers Fig. 1, it might seem as if the energy-window over which an
NMTO set yields good approximations to the wave functions will be wider if one
starts out from energy-dependent linear combinations of kinked partial waves:

φ̂ (ε, r) ≡ φ (ε, r) T̂ (ε) , (107)

which have smoother energy dependencies. Normalized kinked partial waves and
Löwdin orthonormalized kinked partial waves are examples of cases where the
divergences of the kinked partial waves at the energies, εaRL, where a node passes
through the screening radius, are avoided. The transformation given by the –
in general non-Hermitian – matrix T̂ (ε) mixes kinked partial waves with the
same energy and different RL’s linearly. Although the Hilbert spaces spanned
by the energy-dependent sets, φ (ε, r) and φ̂ (ε, r) , are identical, it is not obvious
that those spanned by the respective polynomial approximations, χ(N) (r) and
χ̂(N) (r) , are also identical, particularly not if one bears only Fig. 1 in mind.

Depending on the transformation, the resulting φ̂ (ε, r) may completely have
lost its original RL-character. Since the linear combination, φ̂ (ε, r) , of kinked
partial waves has active radial functions on other sites, as well as at its own
site for other L’s, it is not a kinked partial wave in the usual sense, that is, one
which could have been obtained by a screening transformation. Remember, that
for 3rd-generation kinked partial waves, a screening transformation is not linear.
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In the following, we shall assume that the screening radii have been chosen at the
previous step, in the screening calculation for the structure matrix, and perhaps
by subsequent re-screening of the Gn’s using (55).

A further motivation for considering transformed kinked partial waves is
that they might provide the freedom to obtain energy matrices (81) which are
Hermitian. This would simplify the finite-difference expressions (86) and (88) for
the NMTO so that they take the simpler form (1) which then – like in (3) – could
be diagonalized to leading order by the eigenvectors of Ê(N). From expression
(85) for the transfer matrix, we realize that the condition that a transformed
Ê(M) be a Hamiltonian matrix, is that we can find a transformation with the
property that 〈

χ̂(M) | χ̂(M−1)
〉

= 1. (108)

This formalism could therefore also be the basis for obtaining an orthonormal
NMTO set.

Let us finally express the important equations (57)-(63) in terms of the trans-
formed kinked partial waves:

(H − ε) φ̂ (ε, r) = −δ (r) K̂ (ε) , (H − ε) φ̂ (ε, r) Ĝ (ε) = −δ (r) , (109)

where we have defined the non-Hermitian matrices

K̂ (ε) ≡ K (ε) T̂ (ε) , Ĝ (ε) ≡ K̂ (ε)−1 = T̂ (ε)−1
G (ε) . (110)

Note that these definitions do not correspond to similarity transformations. The
kink matrix, K (ε) , and thereby its inverse, G (ε) , were originally defined in such
a way that they are Hermitian, but they are inherently ’skew’, because (109) tells
us that it is the ’one-sided’ contraction of the Green function,

γ (ε, r) = φ (ε, r)G (ε) = φ̂ (ε, r) Ĝ (ε) , (111)

which is invariant. For the same reason, the integrals of the products of two
contracted Green functions, with possibly different energies, form an overlap
matrix,

Ĝ (ε)†
〈
φ̂ (ε) | φ̂ (ε′)

〉
Ĝ (ε′) = −G (ε) − G (ε′)

ε − ε′ , (112)

which is independent of T̂ (ε) .
Adding to the discussion following (92) about the meaning of the matrix

equation 〈φn | φn′〉 = 〈φn′ | φn〉 , note that this equation does not hold in a
general representation:

〈
φ̂n | φ̂n′

〉
= T̂ †

nT̂
†−1
n′

〈
φ̂n′ | φ̂n

〉
T̂−1
n T̂n′ �=

〈
φ̂n′ | φ̂n

〉
,

unless T̂n = T̂n′ . But it is of course always true that
〈
φ̂n | φ̂n′

〉
=

〈
φ̂n′ | φ̂n

〉†
.

We now come to derive NMTOs from the transformed kinked partial waves
(107). Since the arguments around expression (69) concerned the contracted
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Green function, which according to (111) is invariant, (69) is unchanged but
should be rewritten in the form:

χ̂(N) (ε, r) Ĝ (ε) = φ̂ (ε, r) Ĝ (ε) −
N∑
n=0

φ̂n (r) ĜnA(N)
n (ε) . (113)

As a consequence, (70) should be substituted by:

χ̂(N) (r) =
∆N φ̂ (r) Ĝ
∆ [0..N ]

(
∆N Ĝ

∆ [0..N ]

)−1

=
∆Nφ (r)G
∆ [0..N ]

(
∆N Ĝ

∆ [0..N ]

)−1

. (114)

The last equation (114) shows that the polynomial approximation to the
transformed energy-dependent NMTO, χ̂(N) (ε, r) = χ(N) (ε, r) T̂ (ε) , is

χ̂(N) (r) = χ(N) (r) G [0...N ] Ĝ [0...N ]−1
, (115)

which is a linear transformation. Hence, regardless of the energy-dependent
transformation T̂ (ε) of the kinked partial waves, all NMTO sets span the same
Hilbert space and all energy-windows are therefore identical. This disproves the
above-mentioned naive conclusion drawn from Fig. 1. Since G (ε) = T̂ (ε) Ĝ (ε) ,
we may express the NMTO transformation (115) as a Newton series (88) for
T̂ (ε) :

G [0...N ] Ĝ [0...N ]−1 =
(
T̂ Ĝ

)
[0...N ] Ĝ [0...N ]−1 (116)

=
∑N

M=0
T̂ [0..M ] Ĝ [M..N ] Ĝ [0...N ]−1

= T̂0 + ..+ T̂ [0...N ]
(
Ê(1) − εN−1

)
..
(
Ê(N) − ε0

)
.

Since the contracted Green function is invariant, so are equations (92) and (93)
which relate the overlap and Hamiltonian integrals of such functions to Hermite
divided differences of G (ε) . For the NMTO overlap and Hamiltonian matrices,
we therefore obtain (94) and (95), with the prefactor substituted by Ĝ [0..N ]−1†

,

the postfactor substituted by Ĝ [0..N ]−1
, and the Hermite divided differences of

G (ε) unaltered.
The first equation (114) shows that the expressions derived previously for the

NMTOs, excluding those for integrals over NMTOs, may be taken over, after
these expressions have been subject to the following substitutions:

φ (ε, r) → φ̂ (ε, r) , K (ε) → K̂ (ε) , L
(N)
n → L̂

(N)
n ,

χ (ε, r) → χ̂ (ε, r) , G (ε) → Ĝ (ε) , E(M) → Ê(M).
(117)

Remember, that the substitutions for K (ε) and G (ε) do not correspond to a
similarity transformation.

As long as we only consider T̂ (ε)-transformations which are independent
of N , the step-down relation (80) holds for the transformed NMTOs and for
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its transfer matrices, because the derivation merely made use of (57), which
transforms into (109). This shows that Ê(0) − ε0 equals −K̂0 = −K0T̂0, as
expected, but that:

〈
χ̂(0) | χ̂(−1)

〉
= 1 does not hold. The hatted version of (85)

therefore only holds for N ≥ 1. For N = 0 :〈
χ̂(0) |H − ε0| χ̂(0)

〉
= −T̂ †

0K0T̂0 = T̂ †
0

(
Ê(0) − ε0

)
≡ Ĥ(0) − ε0. (118)

The expressions for the transformed NMTO in terms of divided differences of
transformed kinked partial waves are the hatted versions of (86) and (88). One
should remember that the divided difference, φ̂ ([0..M ] , r) , is a linear combi-
nation of the M + 1 functions φ0 (r) T̂0, .., φM (r) T̂M , and hence, a linear com-
bination of the M + 1 divided differences: φ0 (r) , .., φ ([0..M ] , r). This is the

generalization of the property: dφ (ε, r) T̂ (ε) /dε|εν
= φ̇ (r) T̂ + φ (r)

.

T̂ , used in
the 2nd-generation LMTO formalism. Explicitly:

φ̂ ([0...M ] , r) =
M∑
n=0

φn (r) T̂n∏M
m=0, �=n (εn − εm)

(119)

=
M∑
m=0

φ ([m..M ] , r) T̂ [0..m] = φ ([0...M ] , r) T̂0 + ..+ φM (r) T̂ [0...M ] .

The transformed versions of the results (102), (103) are complicated, unless T̂ (ε)
is independent of ε. In that case, the right-hand sides just have K (ε) substituted
by T̂ †K (ε) T̂ ≡ K̄ (ε) .

Usually
〈
φ̂ [0..M ] | φ̂ [0..N ]

〉
�=

〈
φ̂ [0..N ] | φ̂ [0..M ]

〉
, unless T̂ (ε) = T̂ , or

the matrix is diagonal;
〈
φ̂ [0..M ] | φ̂ [0..N ]

〉
=

〈
φ̂ [0..N ] | φ̂ [0..M ]

〉†
of course

always holds.

5 Hamiltonian Energy Matrices and Orthonormal Sets

Having seen that an energy-dependent, linear transformation (107) of the MTO
set does not change the Hilbert space spanned by the set of energy-independent
NMTOs, but merely the individual basis functions, we now turn to the objective
of finding a representation in which the energy matrices Ê(M) – but not neces-
sarily the Green matrix Ĝ (ε) – are Hermitian. The energy matrices will then be
the two-center Hamiltonians entering expressions like (1) for the orbitals. From
(85), we obviously want:

Ê(M) − εM =
〈
χ̂(M) |H − εM | χ̂(M)

〉
≡ Ĥ(M) − εM (120)

for 1 ≤ M ≤ N, and since this condition leads to the near-orthonormality
condition (108), it guides the way to make one of the NMTO sets – let us call
it the Lth – orthonormal.
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In order to solve the N near-orthonormality conditions for the Hamiltonian
matrices, we first insert the transformed version of expression (83) for the in-
verse of the Mth divided difference of the Green matrix in terms of the transfer
matrices and Ĥ(0) − ε0, defined by (118),

−Ĝ [0...M ]−1 = T̂−1†
0

(
Ĥ(0) − ε0

)(
Ĥ(1) − ε1

)
..
(
Ĥ(M) − εM

)
, (121)

into the transformed version of expression (95) for the Hamiltonian in terms of
the 2Mth Hermite divided difference of the original Green matrix G (ε) . We
then use (120) and notice that one factor Ĥ(M) − εM cancels out so that the
equation may be solved for this highest transfer matrix:

Ĥ(M) − εM =


(
Ĥ(M−1) − εM−1

)
..
(
Ĥ(1) − ε1

)(
Ĥ(0) − ε0

)
×T̂−1

0 (−G [[0..M − 1]M ]) T̂−1†
0

×
(
Ĥ(0) − ε0

)(
Ĥ(1) − ε1

)
..
(
Ĥ(M−1) − εM−1

)


−1

for M ≥ 1. Solving recursively for the transfer matrices, and including (118) at
the top, we obtain the following results:

Ĥ(0) − ε0 = −T̂ †
0G [[ ] 0]−1

T̂0

Ĥ(1) − ε1 = −T̂−1
0 G [[ ] 0] G [[0] 1]−1

G [[ ] 0] T̂−1†
0

Ĥ(2) − ε2 = −T̂ †
0G [[ ] 0]−1

G [[0] 1] G [[01] 2]−1
G [[0] 1] G [[ ] 0]−1

T̂0

Ĥ(M) − εM = −T̂
(−1)M (†)M+1

0 G [[ ] 0](−1)M+1

... G [[0..M − 1]M ]−1

...G [[ ] 0](−1)M+1

T̂
(−1)M (†)M

0 , (122)

where for reasons of systematics we have used the notation (154):

G [[ ] 0] = G [0] = G0 = K−1
0 ,

explained in the Appendix.
The divided differences (121) of the transformed Green matrix are needed

for specification of the transformation via (110), the orbitals via (115), or the
transformed kinked partial waves via (111), and are seen to be given by:

Ĝ [0]−1 = G [[ ] 0]−1
T̂0

Ĝ [01]−1 = −G [[0] 1]−1
G [[ ] 0] T̂−1†

0 (123)

Ĝ [012]−1 = G [[01] 2]−1
G [[0] 1] G [[ ] 0]−1

T̂0

Ĝ [0...M ]−1 = (−)M G [[0..M − 1]M ]−1
...G [[ ] 0](−1)M+1

T̂
(−1)M (†)M

0 .

Since we originally had the N + 1 matrices T̂0...T̂N at our disposal and have
usedN to satisfy the near-orthonormality conditions, we have one, T̂0, left. This –
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and thereby implicitly also the other T̂n’s – may now be chosen equal to a matrix,
Ť0, which makes the Lth set orthonormal. Note that whereas the transformation
T̂ (ε) did not depend on the order of any basis set, the transformation Ť (ε) does;
it depends on L.

Let us first discuss whether the transformation (98) to an orthonormalized
NMTO set may at all be arrived at by an energy-dependent linear transfor-
mation of the kinked partial waves: According to (115), othonormality of the
Lth set happens for any transformation Ť (ε) which satisfies:

(
Ť−1G

)
[0...L] =

(−G [[0...L]])1/2 , where G [[0..L]] is the (2L + 1)st Hermite divided difference
(152) of the original Green matrix. Hence, this is a linear equation between the
L + 1 values of the matrix Ť (ε)−1 at the first L + 1 mesh points, and it is
therefore plausible that it may be used to fix Ť0.

The better way of writing this equation is, like for the Hamiltonian matrix,
to insert (121) for Ĝ [0..L]−1 into the transformed version of expression (94) for
the overlap matrix. As a result:〈

χ̂(L) | χ̂(L)
〉
=

(
Ĥ(L) − εL

)
..
(
Ĥ(1) − ε1

)(
Ĥ(0) − ε0

)
× (124)

T̂−1
0 (−G [[0..L]]) T̂−1†

0

(
Ĥ(0) − ε0

)(
Ĥ(1) − ε1

)
..
(
Ĥ(L) − εL

)
= −T̂

(−1)L(†)L+1

0 G [[ ] 0](−1)L+1

..G [[0..L]] ..G [[ ] 0](−1)L+1

T̂
(−1)L(†)L

0 .

We see that the equation
〈
χ̂(L) | χ̂(L)

〉
= 1, in contrast to the equation:〈

χ̂(M) |H − εM | χ̂(M)
〉
= Ĥ(M) − εM , is quadratic in all Hamiltonians, and the-

refore can only be solved by taking the square root of a matrix.
Hence, our strategy is to choose a T̂0, which makes the non-orthonormality,〈

χ̂(L) | χ̂(L)
〉

− 1 ≡ Ô(L), (125)

so small, that we may use an expansion like (100) to find Ť0 and the correspon-
ding Hamiltonians Ȟ(M). Of these, Ȟ(L) equals the variational Hamiltonian (99)
with N substituted by L, and its eigenvalues are therefore correct to order 2L+1.
Expression (124) now tells us that:

T̂
(−1)L+1(†)L+1

0

〈
χ̂(L) | χ̂(L)

〉
T̂

(−1)L+1(†)L

0 = Ť
(−1)L+1(†)L+1

0 Ť
(−1)L+1(†)L

0 ,

which may be solved to yield:

Ť0 = T̂0

√
1 + Ô(L)

(−1)L+1

= T̂0

1 + 1
2 Ô

(L) − 1
8

(
Ô(L)

)2
+ ..

1 − 1
2 Ô

(L) + 3
8

(
Ô(L)

)2
− ..

(126)

Here, the upper result is for L odd and the lower for L even. Since Ô(L) will
be chosen small, and for L > 1 is usually of order (εi − ε1) (εi − ε0) as we shall
argue in (137) and (144), this transformation preserves the RL-character of each
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NMTO. The Hamiltonian matrix (122) is seen to transform like the overlap
matrix (124) with M substituted for L and, as a consequence,

Ȟ(M) − εM =√
1 + Ô(L)

(−1)L−M+1 (
Ĥ(M) − εM

)√
1 + Ô(L)

(−1)L−M+1

. (127)

Similarly, from (123):

Ǧ [0...M ]−1 = Ĝ [0...M ]−1
√
1 + Ô(L)

(−1)L−M+1

. (128)

A procedure for computing [1 +O]±
1
2 , which is more robust than the matrix

Taylor series (126), is included in our codes [60].

Choosing T̂0. Since the near-orthonormality conditions (108) merely fix the
geometrical average

〈
χ̂(M) | χ̂(M−1)

〉
of successive sets, the nearly orthonormal

scheme (122)-(124) only makes sense if the transformation T̂0 of the kinked
partial waves at ε0 is chosen in such a way that the non-orthonormality Ô(0)

is small compared with the unit matrix. The nearly-orthonormal scheme alone,
does not make the orthonormalization integrals

〈
χ̂(M) | χ̂(M)

〉
converge towards

the unit matrix, but make them behave like:〈
χ̂(M) | χ̂(M)

〉
∼

〈
χ̂(0) | χ̂(0)

〉(−1)M

.

This alternates with fluctuations depending on the size of
〈
χ̂(0) | χ̂(0)

〉
.

The first thing to do is therefore to renormalize the MTOs in such a way
that T̂ a†

0

〈
|φaRL|2

〉
T̂ a

0 = 1, instead of (47). Hence, the first choice is:

T̂ a
0 =

(
k̇a0

)− 1
2

(129)

where k̇a0 is the energy-independent diagonal matrix with elements〈
|φaRL (ε0)|2

〉
= K̇a

RL,RL (ε0) ≡ k̇aRL,RL (ε0) . (130)

Another choice is to start with a Löwdin orthonormalized 0th-order set:

T̂ a
0 =

(
k̇a0

)− 1
2 √

1 +Oa
−1

(131)

where Oa is the non-orthonormality of the 0th-order, renormalized MTO set:

Oa ≡
(
k̇a0

)− 1
2
K̇a

0

(
k̇a0

)− 1
2 − 1. (132)

This choice therefore corresponds to taking L = 0.
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Test case: GaAs. We have tested this orthonormalization method for GaAs
using the minimal Ga spd As sp basis set and going all the way up to L = 3,
that is, to a CMTO basis with the properties that Ȟ(3) =

〈
χ̌(3) |H| χ̌(3)

〉
and〈

χ̌(3) | χ̌(3)
〉
= 1, so that Ȟ(3) is a 7th-order Hamiltonian. Ȟ(2) and Ȟ(1) are of

lower order, however, and neither of the three Hamiltonians commute.
We diagonalized Ȟ(L) for L = 1, 2, 3 and compared with the band structures

obtained with the corresponding non-orthonormal variational method discussed
in Sect. 3.2. Both starting choices (129) and (131) were tried, and both gave fast
convergence of the square-root expansions. The first choice which only requires
evaluation of a square root at the last stage (127) but whose non-orthonormality
Ô(L) is larger, was found to be the fastest [24].

Aleph-representation. The renormalization (129) is of the same nature as
– but simpler than (due to lack of energy dependence) – the one performed
in Subsection 2.3, where we went from phase-shift normalization to screening-
sphere normalization. That diagonal transformation was given by (45) for the
screened spherical waves, by (46) and (47) for the 0th-order MTOs, and by (49)
for the KKR matrix. Since we distinguished between those two normalizations
by using respectively Greek and Latin superscripts for the screening, e.g. α
and a, and since it is irrelevant, whether one arrives at a nearly orthonormal
representation from quantities normalized one-or-another way, it is logical to
label quantities having the integral normalization (129) by Hebraic superscripts,
e.g. ℵ as corresponding to the same screening as α and a. Although not diagonal,
and therefore influencing the shape of the kinked partial waves, also the Löwdin
orthonormalization (131) is an energy-independent similarity transformation,
and so is any of the following transformations:

φℵ (ε, r) ≡ φa (ε, r) T̂ a
0 χℵ(N) (ε, r) ≡ χa(N) (ε, r) T̂ a

0

Kℵ (ε) ≡ T̂ a †
0 Ka (ε) T̂ a

0 Gℵ (ε) ≡ T̂ a−1
0 Ga (ε) T̂ a−1 †

0

(133)

with T̂ a
0 arbitrary. From the latter energy-independent similarity transformation

of G (ε) , the non-Hermitian matrices L
(N)
n and E(N), which are given in terms

of G (ε) by respectively (73) and (81), are seen to transform like:

L
ℵ(N)
n = T̂ a−1

0 L
a(N)
n T̂ a

0 and Eℵ(M) = T̂ a−1
0 Ea(M) T̂ a

0 . (134)

This – (133)-(134) – has all concerned an energy-independent similarity trans-
formation of un-hatted quantities.

In order to ensure that the hatted quantities are independent of which repre-
sentation – a or ℵ – we start out from, e.g.

φ̂ℵ (ε, r) = φ̂a (ε, r) = φa (ε, r) T̂ a (ε) = φℵ (ε, r) T̂ℵ (ε)

and

Ĝℵ (ε) = Ĝa (ε) = T̂ a (ε)−1
Ga (ε) T̂ a (ε)−1† = T̂ℵ (ε)−1

Gℵ (ε) T̂ℵ (ε)−1 †
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where, from the latter, it follows that

L̂
ℵ(N)
n = L̂

a(N)
n and Ê

ℵ(M)
n = Ê

a(M)
n ,

it suffices to satisfy the relation:

T̂ℵ (ε) ≡ T̂ a−1
0 T̂ a (ε) , which leads to : T̂ℵ

0 = 1. (135)

In conclusion, under the substitution a → ℵ, all previous equations remain valid,
and the factors T̂ℵ

0 may be deleted.
The virtue of this notation is that, once we have decided upon the normaliza-

tion and the screening, we can drop the superscripts; and this is what we shall do:
From now on, and throughout the remainder of this paper, un-hatted quantities,
i.e. the kinked partial waves, the kink and the Green matrices, and the Lagrange
and energy matrices, are all supposed to have the integral (ortho)normalization
(129) or (131), that is, they are all in the Aleph-representation. All equations
derived previously are then unchanged, and T̂0 may be dropped.

Accuracies of Hamiltonians. The accuracies of the Hamiltonians depend
on the sizes of the corresponding non-orthonormalities. Specifically, since the
residual error of the one-electron energy after use of the variational principle (5)
for the set χ̂(M) (r),

Ĥ(M)vi = εivi + (εi − εM ) Ô(M)vi ,

is proportional to (εi − ε0)
2
.. (εi − εM )2 , neglect of the non-orthonormality,

leads to the error:

δε̂
(M)
i = (εi − εM ) Ô(M)

ii + O
{
(εi − ε0)

2
.. (εi − εM )2

}
, (136)

where Ô
(M)
ii ≡ v†

i Ô
(M)vi and O means at the order of. The goal should thus be

to reduce the non-orthonormality to:

Ô
(M)
ii = O

{
(εi − ε0)

2
.. (εi − εM−1)

2 (εi − εM )
}

because in that case, the error from non-orthonormality will be of the same order
as that of the residual error. This can usually only achieved for M = L.

The order of the non-orthonormality may be found by use of the difference
function:

χ̂(M) (r) − χ̂(M−1) (r) = φ̂ ([01] , r)
(
Ĥ(M) − Ĥ(M−1)

)
+ φ̂ ([012] , r)

×


(
Ĥ(M−1) − ε1

)(
Ĥ(M) − ε0

)
−

(
Ĥ(M−2) − ε1

)(
Ĥ(M−1) − ε0

) + .. ,
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obtained from (88) and where we should take Ĥ(m) ≡ 0 if m < 1. As a result:

Ô(M) =
〈
χ̂(M) | χ̂(M) − χ̂(M−1)

〉
=

〈
φ̂0 | φ̂ [01]

〉(
Ĥ(M) − Ĥ(M−1)

)
(137)

+
(
Ĥ(M) − ε0

)〈
φ̂ [01] | φ̂ [01]

〉(
Ĥ(M−1) − ε1

)(
Ĥ(M) − ε0

)
+

〈
φ̂0 | φ̂ [012]

〉
(
Ĥ(M−1) − ε1

)(
Ĥ(M) − ε0

)
−

(
Ĥ(M−2) − ε1

)(
Ĥ(M−1) − ε0

)+ ..

which is usually of order
(
Ĥ(M−1) − ε1

)(
Ĥ(M) − ε0

)
when M > 1.

To evaluate integrals like
〈
φ̂0 | φ̂ [01]

〉
we must transform to the original

representation using (119) and then use (102). In this way we get:〈
φ̂0 | φ̂ [01]

〉
= 〈φ0 | φ [01]〉 + 〈φ0 | φ1〉 T̂ [01] = K [[0] 1] +K [01] T̂ [01] . (138)

Remember, that we are using the Aleph-normalization (133), because this influ-
ences the right-hand sides. For a condensed mesh, (138) reduces to:〈

φ̂ |
.

φ̂

〉
=

〈
φ | φ̇

〉
+ K̇

.

T̂ =
K̈

2!
+ K̇

.

T̂ .

We shall conclude this study of the accuracy of the Hamiltonians in Eq. (145)
below.

6 Connecting Back to the ASA Formalism

What remains to be demonstrated is that the NMTO sets, χ(N) (r) , χ̂(N) (r) ,
and χ̌(N) (r) , of which the two former are based on Löwdin-orthonormalized
kinked partial waves at the first mesh point (131), and the last corresponds
to the L=1-set being orthonormal, are the generalizations to overlapping MT-
potentials, arbitrary N, and discrete meshes of the well-known LMTO-ASA sets
given in the Overview by respectively (1), (8), and (9).

Since in the present paper we have not made use of the ASA, but merely
a MT-potential – plus redefinition of the partial waves followed by a Löwdin-
orthonormalization – we merely need to show that the formalism developed
above reduces to the one given in the Overview for the caseN=1 and a condensed
mesh. In order to bridge the gap between the new and old formalisms, a bit more
will be done though.

N = 0, L = 0. For the 0th-order set we have:

χ(0) (r) = χ̂(0) (r) = φ0 (r) = φ̂0 (r) .
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All un-hatted quantities in the present section will correspond to using kinked
partial waves, transformed to be orthonormal at this first mesh point, ε0. That
is: All un-hatted quantities are in the Aleph-representation (133)-(135) with T̂ a

0
given by (131). In this representation all previously derived relations hold, and
in addition:

T̂0 = 1 and K̇0 = 1. (139)

Relating back to the Overview, this means that instead of the ASA-relation
(13), we have (133) with T̂ a

0 given by (131). The latter is the proper definition of
K̇

a−1/2
0 , now that K̇a

0 = 〈φa0 | φa0〉 is no longer diagonal. We now see that the un-
hatted quantities used in the Overview were, in fact, in the Aleph representation.

The overlap and Hamiltonian matrices for the 0th-order set are thus:〈
χ(0) | χ(0)

〉
= 〈φ0 | φ0〉 =

〈
χ̂(0) | χ̂(0)

〉
=

〈
φ̂0 | φ̂0

〉
= 1〈

χ(0) |H − ε0|χ(0)
〉
=

〈
χ̂(0) |H − ε0| χ̂(0)

〉
= H(0) − ε0 = −K0, (140)

and with the 0th-order set being orthonormal, the Hamiltonian is variational.
Hence, H(0) = Ĥ(0) is the first-order, two-center, TB Hamiltonian of the 3rd-
generation scheme.

N = 1, L = 0. For the LMTO set we have:

χ(1) (r) = φ0 (r) + φ ([01] , r)
(
E(1) − ε0

)
→ φ (r) + φ̇ (r)

(
H(0) − εν

)
,

where E(1) – as given by (90) – is seen to become the Hermitian, first-order
Hamiltonian H(0) given by (140) if the mesh condenses. This proves (1).

The Hamiltonian and overlap matrices were given in respectively (96) and
(97), and using now K̇ = 1 together with (102), we see that for a condensed
mesh〈

χ(1) |H − ε1|χ(1)
〉

→ −Ġ−1 G̈

2!
Ġ−1 = −K +K

K̈

2!
K

= H(0) − εν +
(
H(0) − εν

)〈
φ | φ̇

〉(
H(0) − εν

)
and 〈

χ(1) | χ(1)
〉

→ −Ġ−1
...
G

3!
Ġ−1 = 1 − K

K̈

2!
− K̈

2!
K +K

...
K

3!
K

= 1 +
(
H(0) − εν

)〈
φ̇ | φ

〉
+

〈
φ | φ̇

〉(
H(0) − εν

)
+

(
H(0) − εν

)〈
φ̇ | φ̇

〉(
H(0) − εν

)
,

which are exactly (7). Merely
〈
φ | φ̇

〉
is not a diagonal matrix of radial integrals

like in the ASA.
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The nearly orthonormal LMTO set is:

χ̂(1) (r) = φ̂0 (r) + φ̂ ([01] , r)
(
Ĥ(1) − ε0

)
,

and the two conditions:
〈
χ̂(0) | χ̂(0)

〉
= 1 =

〈
χ̂(1) | χ̂(0)

〉
, therefore lead to:〈

φ̂ [01] | φ̂0

〉
= 0 =

〈
φ̂0 | φ̂ [01]

〉
, and

〈
φ̂1 | φ̂0

〉
= 1 =

〈
φ̂0 | φ̂1

〉
.

Of these matrix equations, the first means that any φ̂RL ([01] , r) is orthogonal to
any φ̂R′L′ (ε0, r) . As a consequence, the leading term of the non-orthonormality
(137) vanishes. The non-orthonormality of this LMTO set is then:

Ô(1) =
(
Ĥ(1) − ε0

)〈
φ̂ [01] | φ̂ [01]

〉(
Ĥ(1) − ε0

)
, (141)

which by use of (136) shows that the errors of the Ĥ(1)-eigenvalues are:

δε̂
(1)
i ≈

〈
φ̂ [01] | φ̂ [01]

〉
ii
(εi − ε1) (εi − ε0)

2
. (142)

This is one order better than the error ∝ (εi − ε0)
2 obtained by diagonalization

of H(0), but one order worse than the error ∝ (εi − ε1)
2 (εi − ε0)

2 obtained
variationally using the LMTO set. Hence, Ĥ(1) is a second -order Hamiltonian.
From (122):

Ĥ(1) − ε1 = −G0 G [[0] 1]−1
G0 → −G

[
G̈

2!

]−1

G =

(
1 − K

K̈

2!

)−1

(−K) =
[
1 +

(
H(0) − εν

)〈
φ̇ | φ

〉]−1 (
H(0) − εν

)
,

which for a condensed mesh is exactly (8).
For the transformation (115) from the χ to the χ̂-set, we get by use of (123):

G [01] Ĝ [01]−1 = −G [01]G [[0] 1]−1
G0

→ −Ġ

[
G̈

2!

]−1

G = G2

[
G̈

2!

]−1

G =
[
1 +

〈
φ̇ | φ

〉(
H(0) − εν

)]−1

which – since from (102):
〈
φ̇ | φ

〉
=

〈
φ | φ̇

〉
– is exactly (8).

The transformation (119) of the kinked partial waves is most easily found
by using the orthogonality of φ̂0 (r) and φ̂ ([01] , r) together with (138). For a
condensed mesh, the result is simple:

.

φ̂ (r) = φ̇ (r) + φ (r)
.

T̂ = φ̇ (r) − φ (r)
〈
φ | φ̇

〉
= φ̇ (r) − φ (r)

K̈

2!
,
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and well known – see Eqs. (8) and (12). For a discrete mesh, things look more
complicated in K-language: From (138),

T̂ [01] = −K [01]−1
K [[0] 1] = −K [01]−1 1 − K [01]

ε0 − ε1
,

where the 2nd equation has been obtained by use of (154): F [[0] 1] = Ḟ0−F [01]
ε0−ε1 ,

together with: K̇0 = 1. For (119) we thus obtain:

φ̂ ([01] , r) = φ ([01] , r) + φ1 (r) T̂ [01]

= φ ([01] , r)
(
1 + (ε1 − ε0) T̂ [01]

)
+ φ0 (r) T̂ [01]

= φ ([01] , r)K [01]−1 + φ0 (r) T̂ [01]

=
{
φ ([01] , r) + φ0 (r) T̂ [01]K [01]

}
K [01]−1

= {φ ([01] , r) − φ0 (r)K [[0] 1]}K [01]−1 (143)

where from (102): K [[0] 1] = 〈φ0 | φ [01]〉 is the equivalent to the usual radial
integral and the new factorK [01] in the transformation is caused by the presence
of φ1 (r) rather than φ0 (r) on the right-hand side of the top line in (143).

In order to complete the identification of the nearly-orthonormal LMTO
representation for a discrete mesh with the ASA version (8) and (12), we need
an explicit expression for the third parameter, which is the matrix entering the
non-orthonormality (141). With the help of (143), and remembering that φ̂0 (r)
and φ̂ ([01] , r) are orthogonal, we get:〈

φ̂ [01] | φ̂ [01]
〉

= K [01]−1
〈
φ [01] | φ̂ [01]

〉
= K [01]−1

(
〈φ [01] | φ [01]〉 − K [[0] 1]2

)
K [01]−1

= K [01]−1
(
K [[01]] − K [[0] 1]2

)
K [01]−1

→
〈 .

φ̂ |
.

φ̂

〉
=

...
K

3!
−

[
K̈

2!

]2

,

where, in the third equation, we have used (102).

TB parametrization For tight-binding parametrizations of many bands over
a relatively wide energy range, it is usually important to have as few para-
meters as possible. Our experience [61,20] for the occupied and lowest excited
bands of semiconductors and transition metals is that the off-diagonal elements
of 〈φ0 | φ1〉 = K [01] , 〈φ0 | φ [01]〉 , and

〈
φ̂ [01] | φ̂ [01]

〉
may be neglected. This

is in the spirit of the ASA. We therefore need to tabulate only those few dia-
gonal elements, together with the single TB matrix H(0). These quantities may
then be used to construct for instance the Hamiltonian and overlap matrices〈
χ(1) |H − ε1|χ(1)

〉
and

〈
χ(1) | χ(1)

〉
. This is like in the ASA, but now, we neit-

her need this approximation nor a condensed mesh.
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N > 1, L = 0. The nearly-orthonormal QMTO set is:

χ̂(2) (r) = φ̂0 (r) +
{
φ̂ ([01] , r) + φ̂ ([012] , r)

(
Ĥ(1) − ε1

)}(
Ĥ(2) − ε0

)
with the non-orthonormality:

Ô(2) =
〈
χ̂(2) | χ̂(2) − χ̂(1)

〉
=

〈
φ̂0 | φ̂ [012]

〉(
Ĥ(1) − ε1

)(
Ĥ(2) − ε0

)
+

+
(
Ĥ(2) − ε0

)〈
φ̂ [10] | φ̂ [01]

〉(
Ĥ(2) − Ĥ(1)

)
+ .. .

This – together with (136) – shows that the eigenvalue errors of Ĥ(2) are:

δε̂
(2)
i ≈

〈
φ̂0 | φ̂ [012]

〉
ii
(εi − ε2) (εi − ε1) (εi − ε0) ,

which means, that Ĥ(2) is a second-order Hamiltonian like Ĥ(1), but different
from it. In general, for N > 1, the leading non-orthonormality is:

Ô(N) ≈
〈
φ̂0 | φ̂ [012]

〉(
Ĥ(N−1) − ε1

)(
Ĥ(N) − ε0

)
, (144)

as seen from (137). This means that Ĥ(N) remains a 2nd-order Hamiltonian
when N > 1, and that its eigenvalue errors are:

δε̂
(N)
i ≈

〈
φ̂0 | φ̂ [012]

〉
ii
(εi − εN ) (εi − ε1) (εi − ε0) . (145)

This is much inferior to the variational estimate obtainable with an NMTO basis.
Moreover, the same result would have been obtained had we started out from the
cheaper, renormalized scheme based on (129). Hence, with the present scheme
only the Hamiltonians H(M) with M ∼ L, have eigenvalues which are accurate
approximations to the one-electron energies.

N = 1, L = 1. We finally use the general procedure (125)-(128) to orthonor-
malize the nearly-orthonormal LMTO set considered above. The small parameter
– the non-orthonormality Ô(L=1) – is thus given by (141).

The transformation from the nearly to the completely orthonormal set is
obtained from (128), with L = M = 1, as:

χ̌(1) (r) = χ̂(1) (r) Ĝ [01] Ǧ [01]−1 = χ̂(1) (r)
[
1 + Ô(1)

]− 1
2
,

which is the generalization to discrete meshes and (overlapping) MT-potentials
of the first equation (9). The resulting, orthonormal LMTO set is:

χ̌(1) (r) = φ̌0 (r) + φ̌ ([01] , r)
(
Ȟ(1) − ε0

)
,

with the third -order Hamiltonian obtained from (127) with L = M = 1 as:

Ȟ(1) − ε1 =
[
1 + Ô(1)

]− 1
2
(
Ĥ(1) − ε1

) [
1 + Ô(1)

]− 1
2
.
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This is the second ASA equation (9).
For the transformation of the kinked partial waves, we have from (126):

φ̌0 (r) = φ̂0 (r)
[
1 + Ô(1)

] 1
2

and putting all of this together, we may obtain:

φ̌ ([01] , r) ≈ φ̂ ([01] , r) − φ̂0 (r)
(
Ĥ(1) − ε0

)〈
φ̂ [01] | φ̂ [01]

〉
,

which is a new result. Finally, we may check that:〈
χ̌(1) | χ̌(0)

〉
=

〈
φ̌0 | φ̌0

〉
+

(
Ȟ(1) − ε0

) 〈
φ̌ [01] | φ̌0

〉
=

1 + Ô(1) −
(
Ȟ(1) − ε0

)〈
φ̂ [01] | φ̂ [01]

〉(
Ȟ(1) − ε0

) 〈
φ̌0 | φ̌0

〉
≈ 1.

7 Outlook

Of the new developments described above, only the use of overlapping MT-
potentials and efficient computation of total energies and forces from TB-LMTO-
ASA charge densities were planned. Those parts turned out to be the hardest
and still await their completion. But on the way, we did pick up a number of
beautiful and useful instruments. Now that we have an accordion for playing
Schrödinger, maybe Poisson can be learned as well.
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9 Appendix: Classical Polynomial Approximations

Lagrange and Newton interpolation. In these interpolation schemes, a fun-
ction f (ε) is approximated by that polynomial of Nth degree, f (N) (ε) , which
coincides with the function at the N+1 energies, ε0, ε1, .., εN , forming the mesh.
The error is proportional to (ε − ε0) (ε − ε1) .. (ε − εN ) .

The expression for the approximating polynomial in terms of the N+1 values
of the function, f (εn) ≡ fn, with n = 0, 1, .., N, is:

f (N) (ε) =
N∑
n=0

fn l(N)
n (ε) , where l(N)

n (ε) ≡
N∏

m=0, �=n

ε − εm
εn − εm

(146)
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is the Lagrange polynomial of Nth degree. It has nodes at all mesh points, except
at the nth, where it takes the value 1. Since Lagrange interpolation is exact for
all functions εM with M ≤ N, the Lagrange polynomials satisfy the sum rules:
εM =

∑N
n=0 (εn)

M
l
(N)
n (ε) , for M = 0, ..., N.

The same approximating polynomial may be expressed as a divided difference
– or Newton – series:

f (N) (ε) =
N∑

M=0

f [0, ..,M ]
M−1∏
n=0

(ε − εn) (147)

= f [0] + f [0, 1] (ε − ε0) + ..+ f [0...N ] (ε − εN−1) .. (ε − ε1) (ε − ε0) ,

where the square parentheses denote divided differences as defined in the follo-
wing table:

ε0 f0 ≡ f [0]
f [0]−f [1]
ε0−ε1 ≡ f [0, 1]

ε1 f1 ≡ f [1] f [0,1]−f [1,2]
ε0−ε2 ≡ f [0, 1, 2]

f [1]−f [2]
ε1−ε2 ≡ f [1, 2]

ε2 f2 ≡ f [2]

In general, that is:

f [m,m+ 1, .., n, n+ 1] ≡ f [m,m+ 1, ., n] − f [m+ 1, ., n, n+ 1]
εm − εn+1

, (148)

where m ≤ n. Note that the two energies in the denominator are those which
refer to the mesh points not common to the two divided differences in the no-
minator. Also, note their order, which defines the sign. A divided difference,
f [0...M ] , is thus a linear combination of f0, f1, ..., fM . The divided differences
entering (147) are those descending along the upper string in the table, but other
forms are possible. Besides, the order of the energies need not be monotonic. In
fact, all divided differences of degree M + 1 involving M specific mesh points
are identical. This means that the order of the arguments in f [0, 1, .,M − 1,M ]
is irrelevant, as may be seen explicitly from expression (149) below. When we
have a long string of arguments, we usually order them after increasing mesh
number, for simplicity of notation.

We may express any divided difference, f [0..M ] , entering the Newton form
(147) as a linear combination of the fn’s with n ≤ M, and thereby establish
the relation to the Lagrange form (146). To do this, we apply both Newton
and Lagrange interpolation to a function, which we take to be that Mth degree
polynomial, f (M) (ε) , which coincides with f (ε) at the first M +1 mesh points.
This is allowed, because f [0..M ] is independent of the fn’s with n > M. In this
way, we get the identity:

f (M) (ε) =
M∑
m=0

f [0..m]
m−1∏
n=0

(ε − εn) =
M∑
n=0

fn l(M)
n (ε)
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and taking now the highest derivative, we obtain the important relation:

f [0...M ] =
M∑
n=0

fn∏M
m=0, �=n (εn − εm)

. (149)

The inverse relation, that is the expression for fn in terms of divided differences
for a (sub)mesh containing εn, is of course just the Newton series (147) evaluated
at the mesh point εn.

In order to factorize (φG) [0...N ] in expression (70) for the NMTO, we shall
need to express theNth-order divided difference of a product function, f (ε) g (ε) ,
in terms of divided differences on the same mesh of the individual functions. Since
the product is local in energy, we start by expressing its divided difference in the
Lagrange form (149):

(fg) [0...N ] =
N∑
n=0

fngn∏N
m=0, �=n (εn − εm)

.

For f (ε) we may choose to use the divided differences in the upper, descending
string of the table. We therefore use (147) to express fn in terms of the divided
differences on the (0..n)-part of the mesh and thereafter reorder the summations:

(fg) [0...N ] =
N∑
n=0

N∑
M=0

f [0..M ]
M−1∏
m′=0

(εn − εm′)
gn∏N

m=0, �=n (εn − εm)

=
N∑

M=0

f [0..M ]
N∑
n=0

∏M−1
m′=0 (εn − εm′)∏N
m=0, �=n (εn − εm)

gn.

Since
∏M−1

m′=0 (εn − εm′) = 0 for n < M,

N∑
n=0

∏M−1
m′=0 (εn − εm′)∏N
m=0, �=n (εn − εm)

gn =
N∑

n=M

∏M−1
m′=0 (εn − εm′)∏N
m=0, �=n (εn − εm)

gn

=
N∑

n=M

gn∏N
m=M, �=n (εn − εm)

= g [M..N ] ,

according to (149). We have thus proved the binomial formula:

(fg) [0...N ] =
N∑

M=0

f [0..M ] g [M..N ] , (150)

which expresses the Nth divided difference of a product on the (0...N)-mesh as
a sum of products of divided differences on respectively the (0..M)- and (M..N)-
parts of the mesh, with M being the only point in common. Hence, this formula
is in terms of the divided differences descending forwards along the upper string
for f, and the divided differences descending backwards along the lower string
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for g, but this is merely one of many possibilities. For the special case: g (ε) = ε,
we get the useful result:

(εf) [0...N ] = f [0..N − 1] + εNf [0...N ] . (151)

Since the numbering of the points is irrelevant, we could of course have singled
out any of the N + 1 points, not merely the last.

Newton interpolation has the conceptual advantage over Lagrange interpo-
lation that the 1st divided differences, f [n − 1, n] , are the slopes of the chords
connecting points n− 1 and n, and hence approximations to the 1st derivatives,
the 2nd divided differences, f [n − 1, n, n+ 1] , are ’local’ approximations to 1

2!
times the 2nd derivatives, and so on, as expressed by (71). For the mesh conden-
sing onto the one energy, εν , Newton interpolation becomes Taylor expansion,
which is of course simpler. An example of this is the binomial expression for the
Nth derivative of a product: For a discrete mesh, there are many alternatives to
(150), but for a condensed mesh, there is only one expression.

Hermite interpolation. It will turn out that the NMTO Hamiltonian and
overlap matrices are best understood and computed using the formalism of Her-
mite interpolation. Here, one seeks the polynomial of degree M +N + 1 which
fits not only the values, fn, at the N + 1 points, but also the slopes, ḟn, at a
subset of M+1 points. We shall number the points in such a way, that the M+1
points are the first. This polynomial is:

f (M+N+1) (ε) =
M∑
n=0

fn +

ḟn − fn

 M∑
m=0, �=n

2
εn − εm

+
N∑

m=M+1

1
εn − εm

 (ε − εn)


×l(M)

n (ε) l(N)
n (ε) +

N∑
n=M+1

fn l(M+1)
n (ε) l(N)

n (ε) .

For those interested in why this is so, here are the arguments: The product
of Lagrange polynomials

l(M)
n (ε) l(N)

n (ε) =
M∏

m=0, �=n

(
ε − εm
εn − εm

)2 N∏
m=M+1

ε − εm
εn − εm

,

with 0 ≤ n ≤ M, is of degree M +N. At a mesh point, ε = εn′ , this product has
value 1 when 0 ≤ n′ = n ≤ M, value 0 and slope 0 when 0 ≤ n′ �= n ≤ M, and
value 0 when M < n′ ≤ N. Since the slope is: M∑

m=0, �=n

2
ε − εm

+
N∑

m=M+1

1
ε − εm

 l(M)
n (ε) l(N)

n (ε) ,
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the polynomial of degree M +N + 1 :1 − (ε − εn)

 M∑
m=0, �=n

2
εn − εm

+
N∑

m=M+1

1
εn − εm

 l(M)
n (ε) l(N)

n (ε) ,

with 0 ≤ n ≤ M, has value 1 and slope 0 if ε = εn. If ε = εn′ �= εn, it has value 0
and slope 0 when 0 ≤ n′ ≤ M , and value 0 and some slope when M < n′ ≤ N.
The polynomial of degree M +N + 1 :

(ε − εn) l(M)
n (ε) l(N)

n (ε) ,

with 0 ≤ n ≤ M, vanishes at all mesh points, has slope 1 for ε = εn, slope 0
for ε = εn′ �= εn when n′ and 0 ≤ n′ ≤ M, and some slope when M < n′ ≤ N.
Finally, the product:

l(M+1)
n (ε) l(N)

n (ε) =
M∏
m=0

(
ε − εm
εn − εm

)2 N∏
m=M+1, �=n

ε − εm
εn − εm

,

with M < n ≤ N, is a polynomial of degree M +N +1. For ε = εn′ it has value
0 and slope 0 if 0 ≤ n′ ≤ M, value 0 and some slope if M < n′ �= n ≤ N, and
value 1 and some slope if M < n′ = n ≤ N.

What we shall really need is, like in (149), 1
(M+N+1)! times the highest deriva-

tive of the polynomial f (M+N+1) (ε). Calculated as the coefficient to the highest
power of ε, this Hermite divided difference is:

(M+N+1)

f (M+N+1)

(M +N + 1)!
=

M∑
n=0

ḟn − fn

(
M∑

n′=0, �=n
2

εn−εn′ +
N∑

n′=M+1

1
εn−εn′

)
M∏

m=0, �=n
(εn − εm)2

N∏
m=M+1

(εn − εm)

+
N∑

n=M+1

fn
M∏
m=0

(εn − εm)2
N∏

m=M+1, �=n
(εn − εm)

= lim
ε→0

f [0.....M +N + 1] ≡ f [[0...M ] ..N ] . (152)

In the last line, we have indicated that the Hermite divided difference may be
considered as the divided difference for the folded and paired mesh:

ε0 εN+1 ε1 εN+2 · · · · εM εM+N+1 · · εN

in the limit that the energy differences, εn ≡ εn+N+1−εn, between the pairs tend
to zero. In analogy with the notation for the divided differences, we have denoted
the (M +N + 1)st Hermite divided difference: f [[0...M ] ..N ] , which means that
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the mesh points listed inside two square parentheses have both fn and ḟn asso-
ciated with them, whereas those listed inside only one square parenthesis have
merely fn. Like for the divided differences, the order of the arguments inside a
square parenthesis is irrelevant, but for long strings we usually choose the order
of increasing n. For a condensed mesh,

f [[0...M ] ..N ] →
(M+N+1)

f

(M +N + 1)!
. (153)

As examples of Hermite divided differences we have:

f [[0]] = ḟ0 f [[0] 1] = ḟ0−f [01]
ε0−ε1

f [[01]] = ḟ0−2f [0,1]+ḟ1
(ε0−ε1)2 f [[ ] 0..N ] = f [0..N ]

(154)

In the NMTO formalism the Hermite divided difference (152) comes in the
disguise of the following double sum (92):

N∑
n=0

M∑
n′=0

f [n, n′]∏N
m=0, �=n (εn − εm)

∏M
m′=0, �=n′ (εn′ − εm′)

, (155)

which may, in fact, be viewed as a divided difference (149) – albeit in two dimen-
sions – but that brings little simplification. So let us prove that (152) and (155)
are identical: First of all, the ḟn-terms of the double sum (155) are those for
which n = n′, and they obviously equal those of the single sum (152). Secondly,
the fn-terms in (155) are:

N∑
n=0

M∑
n′=0, �=n

fn (εn − εn′)−1 + fn′ (εn′ − εn)
−1∏N

m=0, �=n (εn − εm)
∏M

m=0, �=n′ (εn′ − εm)
=

N∑
n=M+1

fn∏N
m=0, �=n (εn − εm)

M∑
n′=0

(εn − εn′)−1∏M
m=0, �=n′ (εn′ − εm)

+ (156)

M∑
n=0

fn∏N
m=0, �=n (εn − εm)

M∑
n′=0, �=n

(εn − εn′)−1∏M
m=0, �=n′ (εn′ − εm)

+

M∑
n=0

fn∏M
m=0, �=n (εn − εm)

N∑
n′=0, �=n

(εn − εn′)−1∏N
m=0, �=n′ (εn′ − εm)

.

Now, according to (149),

M∑
n′=0

1
εn−εn′∏M

m=0, �=n′ (εn′ − εm)
=

1
εn − ε

[0...M ] (157)
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is the Mth divided difference of the single-pole function 1/ (εn − ε) , provided
that n is not on the mesh 0...M. For the sum where n is on the mesh – but the
n′=n-term is excluded – we have:

M∑
n′=0, �=n

1
εn−εn′∏M

m=0, �=n′ (εn′ − εm)
=

M∑
n′=0, �=n

−1
(εn−εn′ )2∏M

m=0, �=n, �=n′ (εn′ − εm)

=
−1

(εn − ε)2
[0..n − 1, n+ 1..M ] . (158)

This result also holds if M is named N, and is therefore relevant for both of the
last terms in (156). We then need simpler expressions for the divided differences
of the single- and double-pole functions. Guided by the results:

1
M !

dM

dεM
1

εi − ε
=

1

(εi − ε)M+1 ,
1
M !

dM

dεM
1

(εi − ε)2
=

M + 1

(εi − ε)M+2 ,

for the derivatives, we postulate that for a discrete mesh,

1
εi − ε

[0...M ] =
1∏M

m=0 (εi − εm)
,

1
(εi − ε)2

[0...M ] =

∑M
n=0

1
εi−εn∏M

m=0 (εi − εm)
.

(159)

For M=0, these expressions obviously reduce to the correct results, (εi − ε0)
−1

and (εi − ε0)
−2

. For M > 0, our conjectures inserted on the right-hand side of
(148) and subsequent use of (149) yield:

1
εi−ε [0..M − 1] − 1

εi−ε [1..M ]
ε0 − εM

=
1∏M

m=0 (εi − εm)
=

1
εi − ε

[0...M ] ,

1
(εi−ε)2 [0..M − 1] − 1

(εi−ε)2 [1..M ]

ε0 − εM
=

M∑
n=0

1
εi−εn∏M

m=0 (εi − εm)
=

1
(εi − ε)2

[0...M ] ,

which are obviously correct too. Hence, equations (159) have been proved.
Using finally (159) in (157) and (158), and right back in (156), leads to the

fn-terms in (152). We have therefore demonstrated that:

N∑
n=0

M∑
n′=0

f [n, n′]
N∏

m=0, �=n
(εn − εm)

M∏
m′=0, �=n′

(εn′ − εm′)
= f [[0...M ] ..N ] . (160)

The final expression needed for the NMTO formalism, is one for the Her-
mite divided difference of the product-function εf (ε) . For this we can use (151)
applied to the folded and paired mesh. As a result:

(εf) [[0...M ] ..N ] = f [[0..M − 1] ..N ] + εMf [[0...M ] ..N ] . (161)

Since the numbering of the points is irrelevant, we could of course have singled
out any of the M + 1 points, not merely the last.
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26. R. Dronskowski and P.E. Blöchl, J. Phys. Chem. 97, 8617 (1993).
27. D. Johrendt, C. Felser, O. Jepsen, O.K. Andersen, A. Mewis, and J. Rouxel, J.

Solid State Chem. 130, 254 (1997).
28. F. Boucher and R. Rousseau, Inorg. Chem. 37, 2351 (1998).
29. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
30. The Stuttgart TB-LMTO program. http://www.mpi-stuttgart.mpg.de
31. O. Jepsen and O.K. Andersen, Z. Phys. B 97, 35 (1995).
32. J.M. Wills (unpublished); M. Alouani, J.M. Wills, and J.W. Wilkins, Phys. Rev.

B 57, 9502 (1998); J.M. Wills and B.R. Cooper, Phys. Rev. B 36, 3809 (1987),
D.L. Price and B.R. Cooper, Phys. Rev. B 39, 4945 (1989).

33. S.Y. Savrasov, Phys. Rev. B 54, 16470 (1996).
34. M. Methfessel, C.O. Rodriguez, and O.K. Andersen, Phys. Rev. B 40, 2009 (1989).
35. M. Methfessel, Phys. Rev. 38, 1537 (1988).
36. M. Springborg and O.K. Andersen, J. Chem. Phys. 87, 7125 (1986).
37. K.H. Weyrich, Solid State Commun. 54, 975 (1985).
38. F. Casula and F. Herman, J. Chem. Phys. 78, 858, (1983).
39. O. Gunnarsson, J. Harris, and R.O. Jones, Phys. Rev. B 15, 3027 (1977).
40. O.K. Andersen and R.G. Woolley, Mol. Phys. 26, 905 (1973). R.V. Kasowski and

O.K. Andersen, Solid State Commun. 11, 799 (1972).
41. J. Korringa, Physica 13, 392 (1947); W. Kohn and J. Rostoker, Phys. Rev. 94,

1111 (1954); F.S. Ham and B. Segal, Phys. Rev. 124, 1786 (1961).
42. C. Arcangeli and O.K. Andersen (unpublished).
43. C. Arcangeli, R.W. Tank, and O.K. Andersen (unpublished).
44. O.K. Andersen, Z. Pawlowska and O. Jepsen, Phys. Rev. B 34, 5253 (1986).
45. L. Vitos, J. Kollar, and H.L. Skriver, Phys. Rev. B 49, 16694 (1994).
46. A. Savin, O. Jepsen, J. Flad, O.K. Andersen, H. Preuss, and H.G. von Schnering,

Angew. Chem. 104, 186 (1992); Angew. Chem. Int. Ed. Engl. 31, 187 (1992).
47. R.W. Tank, O. K. Andersen, G. Krier, C. Arcangeli, and O. Jepsen (unpublished).
48. R.W. Tank, C. Arcangeli, G. Krier, O. K. Andersen, and O. Jepsen, in Properties of

Complex Inorganic solids, eds. Gonis et al. (Plenum, New York, 1997) pp 233-237.
49. R.W. Tank, C. Arcangeli, and O.K. Andersen (unpublished).
50. I.V. Solovyev, A.I. Liechtenstein, V.A. Gubanov, V.P. Antropov, O.K. Andersen,

Phys. Rev. B 43, 14414-422 (1991).
51. O. K. Andersen and T. Saha-Dasgupta (unpublished).
52. O.K. Andersen, in Computational Methods in Band Theory, eds. P.M. Marcus,

J.F. Janak, and A.R. Williams (Plenum, 1971) p.178. O. K. Andersen and R.V.
Kasowski, Phys. Rev. B 4, 1064 (1971).

53. R. W. Hamming, Numerical Methods for Scientists and Engineers (McGraw-Hill,
New York 1962).

54. V. Anisimov, J. Zaanen, and O.K. Andersen, Phys.Rev. B44, 943-954 (1991), A.I.
Liechtenstein, J. Zaanen, and V.I. Anisimov, Phys. Rev. B 52, R5467 (1995).

55. O.K. Andersen, Europhysics News 12, 5, 1 (1981); in The Electronic Structure of
Complex Systems, eds. W. Temmerman and P.Phariseau (Plenum 1984) p. 11-66.

56. O. Gunnarsson, O. Jepsen, and O.K. Andersen, Phys. Rev. B 27, 7144 (1983).
57. O.K. Andersen and O. Jepsen (unpublished).
58. R. Zeller, P.H. Dederichs, B. Ujfalussy, L. Szunyogh, and P. Weinberger, Phys.

Rev. B 52, 8807 (1995).



84 O.K. Andersen et al.

59. J.C. Slater, Phys. Rev. 51, 846 (1937)
60. C. Arcangeli and O.K. Andersen (unpublished).
61. T. Saha-Dasgupta, O. K. Andersen, C. Arcangeli, R.W. Tank, and O. Jepsen (un-

published).



From ASA Towards the Full Potential

J. Kollár1, L. Vitos1,2, and H.L. Skriver3

1 Research Institute for Solid State Physics,
H-1525 Budapest, P.O.Box 49, Hungary

2 Condensed Matter Theory Group, Physics Department,
Uppsala University, S-75121 Uppsala, Sweden

3 Center for Atomic-scale Materials Physics and Department of Physics,
Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract. To combine the simplicity and efficiency of atomic-sphere approxima-
tion (ASA) based electronic structure calculations and the accuracy of full potential
techniques, we have developed a full charge-density (FCD) method. In this method
the charge density is obtained from the output of self-consistent linear muffin-tin or-
bitals (LMTO) ASA calculations, the Coulomb energy is calculated exactly from the
complete, nonspherically symmetric charge density defined within nonoverlapping,
space-filling Wigner-Seitz cells, and the exchange-correlation energy is evaluated by
means of the local density approximation or the generalized gradient approxima-
tion applied to the complete charge-density. The kinetic energy is obtained as the
ASA kinetic energy corrected for the nonspherically symmetric charge-density by
a gradient expansion. The integration over the Wigner-Seitz cell is carried out by
means of the shape truncation function technique, which is also discussed in detail.
The FCD technique retains most of the simplicity and computational efficiency of
the LMTO-ASA method, while several tests for bulk metals and surfaces show that
the accuracy of the method is similar to that of full potential methods.

1 Introduction

As a consequence of the rapidly increasing computational facilities followed
by the development of computer codes, the ab initio electronic structure me-
thods are able to treat more and more complicated problems, closely related
to applications, with sufficiently high accuracy. During the last two deca-
des the linear muffin-tin orbitals (LMTO) method [1,2,4,9,3,6,7,5,8] has been
one of the most commonly used method in electronic structure calculations.
In particular, due to its simplicity and extreme computational efficiency it
has been extensively used in total-energy calculations for close-packed high-
symmetry systems where the atomic sphere approximation (ASA) may be
applied with sufficient accuracy. However, if the local arrangements of atoms
deviate strongly from spherical symmetry or the atoms change their positions
away from high symmetry positions the ASA cannot be applied. Thus, alt-
hough the LMTO-ASA may be used to calculate, for instance, the electronic
pressure, it cannot in its conventional implementations yield forces and, if
uncorrected, the ASA breaks down when used to calculate elastic shear mo-
duli. To increase the number of systems to which the LMTO method may be
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applied, including systems with low symmetry, one has developed a number
of full-potential (FP) LMTO techniques [10,11,12,13,14,15]. These techni-
ques are of course highly accurate but lack the efficiency of the LMTO-ASA
method. Hence, they may be used in static but not in molecular dynamics
calculations and they cannot be used in many applications.

According to the theorem of Hohenberg and Kohn [16], there exists a
unique energy functional which is variational in the density. Hence, if the
functional is evaluated with a trial density close to the exact ground state
density, the error in the total energy is only of second order in the diffe-
rence between the trial density and the ground state density. This variational
property means that in many cases one can achieve the required accuracy
simply by evaluating the total energy functional using an appropriate trial
density and thus avoiding the most time consuming part of the calculation,
the self-consistent iterations. In order to do this, one has to answer the follo-
wing questions: How does one construct densities which applied in the true
functional yield total energies of sufficient accuracy? In the context of the
LMTO method one has the related question: How does one evaluate the true
functional rather than the approximate ASA functional? It is the purpose of
the present paper to provide one answer to these questions.

In the following, we describe and test an efficient technique for total energy
calculations based on the LMTO-ASA method in the tight-binding (TB) re-
presentation [9,6,7,8]. According to this, we use the complete, non-spherically
symmetric charge density generated in self-consistent ASA calculations to
evaluate the true energy functional. We have developed the new technique
during the last years and used it successfully in many applications [17,18,19],
[20,21,22,23,24]. In the first version of the method we used the uncorrected
ASA kinetic energy for the total energy calculation and only the electrostatic
and exchange-correlation terms of the energy functional were evaluated from
a complete non-spherical charge density. In many applications this approxi-
mation proved to be sufficiently accurate, like e.g. in studying the ground
state atomic volumes of open crystal structures such as the α-phases of the
light actinides [19,20,21]. It has turned out, however, that although the ASA
kinetic energy is often a suitable approximation, it does not, for instance, yield
sufficiently accurate total energies for the small orthorhombic and tetragonal
deformations needed in calculations of elastic constants [22]. Therefore we
improved the kinetic energy calculation beyond the ASA and thereby take
the remaing step towards constructing the true energy functional.

Finally, we point out that although in its present form our full charge
density (FCD) total energy calculation is based on the conventional LMTO-
TB method, it can be an even more promising technique in many applications
if it is combined with the recently developed exact muffin tin orbitals method
by Andersen et al. [25]. The new method gives more accurate interstitial
charge density and kinetic energy, and thus the accuracy of the FCD total
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energy can be substantially improved. The development of such a new FCD
technique is in progress.

The structure of the paper is the following: In Section II we set up the
FCD total energy and in two subsections we discuss the details of the kinetic
and exchange-correlation energy, as well as the Coulomb energy calculations.
We put emphasis on the calculation of the kinetic energy correction to the
ASA and the technique used in the determination of the intercell Coulomb
(Madelung) energy. In Section III we describe the construction of the charge
density in a one-center form using a general muffin-tin orbitals formalism.
The expressions valid on the LMTO basis are given in the Appendix C. In
the calculation of the integrals over the Wigner-Seitz cell we used the shape
truncation function, or simply shape function technique, which is discussed in
Section IV. Some important calculational details faced to actual applications
are presented and discussed through several examples in Section V. The ac-
curacy of the FCD method is demonstrated in comparison with full potential
and experimental results. Finally the paper is ended with the Conclusions.

2 Energy Functional

Within density functional theory the total energy of the system may be de-
composed in the form [16]

E[n] ≡ G[n] + F [n], (1)

where G[n] is a universal functional consisting of the kinetic energy T [n] of
the non-interacting system and the exchange-correlation energy Exc[n], i.e.,

G[n] ≡ T [n] + Exc[n], (2)

and F [n] is the Coulomb contribution to the total energy

F [n] ≡
∫

v(r)n(r)dr+
1
2

∫ ∫
n(r)n(r′)
|r− r′| drdr′. (3)

Here, v(r) is an external potential. The total charge density n(r) may be
given by the sum

n(r) =
∑
R

nR(rR) (4)

over lattice positions R of atomic-centred charge densities nR(rR) defined
within space filling, non-overlapping cells ΩR, which in turn may be written
in the one-centre form [20]
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nR(rR) =
∑
L

nRL(rR)YL(r̂R), (5)

where L is short-hand notation for (l,m), rR = r − R, and YL is a real
harmonic. These atomic centred charge densities are normalized within the
cells and the total charge density is continuous and continuously differentiable
in all space.

In the following we assume that the total energy functional, in accordance
with (4) may be partitioned into cell-contributions, i.e. E[n] =

∑
R ER[n],

where ER[n] ≡ GR[n] +FR[n]. Due to the non-local character of the interac-
tions these functionals depend on the total density (4). However, in the local
density as well as the generalized gradient approximation to the exchange-
correlation and kinetic energies GR depends only on nR.

2.1 Kinetic and Exchange-Correlation Energy

In the self-consistent ASA based methods both the Schrödinger equation and
the Poisson equation are solved within the spherical symmetric approxima-
tion for the charge density and the Wigner-Seitz cell. When self-consistency
has been reached the Coulomb energy may be evaluated exactly by solving
Poisson’s equation for the proper charge density and atomic polyhedron. Ho-
wever, the one-electron energies and, hence, the kinetic energy, will reflect the
approximation used in the solution of Schrödinger’s equation. Therefore, in
order to achieve the required accuracy of the total energy we correct the ASA
kinetic energy. There are several reasons why a correction to the ASA kinetic
energy of the kind presented here has not been previously attempted. First
of all, in most LMTO calculations the electrostatic and exchange-correlation
terms have been evaluated from a spherically symmetric charge density and,
hence, there is no need for a more accurate kinetic energy. Secondly, the
kinetic energy, which is obtained from the Kohn–Sham equations [26] as

TASA =
occ∑
j

εj −
∫

nASA(r)vASA
eff (r)dr, (6)

where εj are the one-electron energies, n(r) the electron density, and the
veff (r) the effective potential, is variational in the potential, and it has often
been assumed that the ASA kinetic energy is in fact sufficiently accurate.
Finally, to improve on the ASA kinetic energy one would need to know an
explicit kinetic energy functional, e.g. in the form of a gradient expansion.
However, in view of the relatively slow convergence of the known kinetic
energy gradient expansions it is not obvious that this would in fact lead to
the required accuracy.
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The solution to this impasse is to evaluate the main contribution to the
kinetic energy in the ASA and then apply an approximate functional form
to evaluate the difference between the ASA and the true kinetic energy. This
remainder is presumably small and may be obtained with sufficient accuracy
by a gradient expansion. A similar approach based on Hartree-Fock densities
has been used in atomic calculations by DePristo and Kress [27]. The pro-
cedure is closely related to the modern gradient correction to local density
functional theory and as we shall demonstrate the corrected FCD method
has the accuracy of the full potential methods while retaining most of the
simplicity and efficiency of the LMTO-ASA.

In principle, the exchange-correlation energy can be evaluated directly
from the total charge density. However, in many cases it is useful to use an
expansion arround a uniform or spherical symmetric charge density. There-
fore, in the following we consider the universal functional G[n] and we will
separate the kinetic and exchange-correlation terms later. The energy density
g, corresponding to the functional GR[nR], is defined as

GR[nR] ≡
∫
ΩR

g([nR], rR)drR (7)

which may, within the density-gradient approximation, be expressed as [28]

g([nR], rR) ≡ t([nR], rR) + εxc([nR], rR)nR(rR)
= t(nR, |∇nR|2, ...) + εxc(nR, |∇nR|2, ...)nR(rR) (8)
≡ g([nR]),

where t and εxcn are the kinetic and exchange-correlation energy densities,
respectively. For charge densities which deviate weakly from spherically sym-
metry g([nR]) may be represented by a Taylor series around the sperically
symmetric charge density n0

R(rR) ≡ 1√
4π

nR0(rR), i.e.,

g([nR]) = g([n0
R]) + ñR(rR)

∂g([nR])
∂nR

∣∣∣∣
n0

R

+∇ñR(rR)
∂g([nR])
∂∇nR

∣∣∣∣
n0

R

+
1
2
ñR(rR)

2 ∂2g([nR])
∂n2

R

∣∣∣∣
n0

R

+
1
2
(∇ñR(rR))2

∂2g([nR])
∂(∇nR)2

∣∣∣∣
n0

R

+ ñR(rR)∇ñR(rR)
∂2g([nR])
∂nR∂∇nR

∣∣∣∣
n0

R

+ ... (9)

where ñR(rR) ≡ nR(rR)− n0
R(rR). As a result, the universal functional may

be expanded in the following form

GR[nR] = G0
R[n

0
R] +G1

R[ñR, n0
R] +G2

R[ñ
2
R, n0

R] + ..., (10)
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which may be used to calculate the total energy provided one knows the
energy density functions and the corresponding gradients. Unfortunately, this
is not the case and one must resort to approximations.

Within modern density functional theory the problem is solved, as far
as the exchange-correlation energy Exc;R[nR] is concerned, by means of the
local density approximation (LDA) or generalized gradient approximation
(GGA) [29] which yield analytic expressions that may easily be applied in
conjunction with the full LMTO charge density. Thus, only the kinetic energy
TR[nR] remains to be accurately evaluated. Here, the problem is that neither
the Kohn–Sham equation (6) in the ASA nor a straight density gradient
expansion of the kinetic energy based on the explicit analytic expressions
given, for instance, in Ref. [28] have sufficient accuracy when used seperately.
However, as we shall show in the following one may by a combination of the
two techniques in the form of a density-gradient correction to the ASA obtain
kinetic energies with the desired accuracy.

We proceed by isolating the lowest order terms in (7 - 10) which may be
evaluated in the ASA and the ”small terms” which may be evaluated using a
suitable functional form. In the ASA the kinetic energy is obtained from the
Kohn–Sham one-electron equations in the form (6) which depends only on
the spherical average of the charge density, because the effective one-electron
ASA potential is spherically symmetric. Hence, viewed as a functional of
an arbitrary density, equation (6) would give the same value for any non-
spherically symmetric charge density having the spherical average n0

R. It may
therefore be identified as the kinetic energy belonging to the charge density
n0
R. Thus, we write

T 0
R[n

0
R] ≈ TASA

R [nASA
R ] +∆[n0

R, nASA
R ] (11)

where TASA
R is the kinetic energy obtained in the ASA from a spherical sym-

metric self-consistent calculation and the second term is a ”small” shape-
correction connected with the fact that the kinetic energy T 0

R[n
0
R] correspon-

ding to the spherically symmetric charge density n0
R is defined within the

Wigner-Seitz cell at R while the ASA kinetic energy is defined inside the
corresponding atomic sphere. Within the LMTO-ASA method the kinetic
energy may be expressed by means of the ASA Hamiltonian HASA and the
one-electron wave functions ψj(rR) as [30]

TASA
R =

occ∑
j

∫
SR

ψj
∗(rR)HASA ψj(rR) drR

−
∫
SR

nASA
R (rR) veff ([nASA

R ], rR) drR, (12)

where veff ([nASA
R ], rR) is the effectiv one-electron potential, SR the atomic

Wigner-Seitz radius, and nASA
R (rR) the ASA charge-density normalized wit-
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hin the atomic sphere which is equivalent to n0
R(rR) inside of the cell and

sphere. This form may include the so-called combined correction [7,30]. The
shape-correction term in (11) may be obtained as

∆[n0
R, nASA

R ] =
∫
ΩR

t([n0
R]) drR −

∫
SR

t([nASA
R ]) drR, (13)

where the first integral is performed within the Wigner-Seitz cell, ΩR, and
the second one within the atomic sphere.

The shape correction and the kinetic energy part of the higher order terms
in (10), i.e., those of first and second order in ñR and ∇ñR, are evaluated by
means of a semi-local kinetic energy density functional. In Appendix A we
present some functionals used in the actual applications.

For strongly anisotropic electron densities, like in the case of surfaces, the
expansion (10) is not convergent. In this case the exchange-correlation energy
has to be evaluated by a direct three dimensional integration of the LDA or
GGA functional, while the non-spherical kinetic energy correction, i. e. the
higher order terms in (10), is calculated as

∫
ΩR

t([nR]) drR −
∫
ΩR

t([n0
R]) drR. (14)

This procedure is much more time consuming than the Taylor expansion (10).
In order to show the effect of the correction terms to the kinetic energy

we consider an orthorhombic shear deformation [22,31] of bcc Mo, which can
be used to determine the c44 elastic constant. In Fig. 1 we show the total
energy, with and without the kinetic energy corrections, versus the relative
deformation parameter d.

The energy determined from the experimental shear elastic constant [31]
is also shown. We observe that using the ASA kinetic energy the calculated
c44 is negative and, hence, the bcc structure of Mo will be unstable against
such an orthorhombic distortion. Obviously, the ASA kinetic energy is not
sufficiently accurate to render the bcc structure of Mo stable. It is only when
the kinetic energy correction is applied that a positive c44 is obtained which
is in fact very close to the measured c44 value.

2.2 Coulomb Energy

In this section our aim is to calculate the Coulomb energy of a given charge
distribution in a solid with arbitrary symmetry. We devide the total elec-
trostatic contribution belonging to the cell at R into the intracell, that de-
pends only on the electron density in the cell, and intercell terms, i.e.

FR[n] = F intra
R [nR] + F inter

R [Q]. (15)
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Fig. 1. Change of the total energy of Mo for orthorhombic shear deformation as a
function of the relative deformation parameter d.

The intracell energy

F intra
R [nR] ≡

∫
ΩR

[
−ZR

rR
+
1
2

∫
ΩR

nR(r′
R)

|rR − r′
R|dr

′
R

]
nR(rR)drR, (16)

where ZR is the atomic number, may be determined by solving the l−dependent
Poisson equation or by numerical integration using, for instance, the shape
function technique [2,17,32]. Denoting by ñRL(rR) the YL(r̂R) projection of
nR(rR) on a spherical surface of radius rR that lies inside the cell and per-
forming the angular integrations the expression (16) for the intracell energy
can be brought to the form

F intra
R [nR] =

√
4π
S

∑
L

∫ Sc
R

0
ñRL(rR)

[(rR
S

)l
PRL(rR)

+
(rR

S

)−l−1
QRL(rR)

]
r2
RdrR (17)
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where

PRL(rR) =
√
4π

2l + 1

∫ Sc
R

rR

ñRL(r′
R)
(
r′
R

S

)−l−1

(r′
R)

2dr′
R (18)

and

QRL(rR) =
√
4π

2l + 1

∫ rR

0
ñRL(r′

R)
(
r′
R

S

)l

(r′
R)

2dr′
R − δL,(0,0) ZR. (19)

Here Sc
R stands for the radius of the sphere circumscribed to the Wigner-Seitz

cell ΩR at R, and S is the average Wigner-Seitz radius. The explicit form for
the ñRL(rR) function will be established later using the shape functions.

In Fig. 2 the intracell Hartree energy of fcc Cu is plotted relative to its
converged value as a function of lmax used in (17). As may be seen from the
figure the energy difference of 0.3 mRy obtained for lmax = 8− 11 is reduced
below 0.1 mRy already for lmax = 12. In the actual calculations we found that
for a wide range of structures a reasonable accuracy of the intracell energy
given by (17) can be achieved by performing the summation over l up to
lmax = 8− 14.

Fig. 2. The convergence test for the intracell Hartree energy of fcc Cu. The results
are plotted relative to their converged value as a function of the maximal l value
used in (17) or in (43).
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The intercell interaction energy belonging to the cell at R may be written
in the following form [17,33]

F inter
R [Q] = − 1

2S

∑
R′L

1
2l + 1

(
bRR′

S

)l

YL(b̂RR′)
∑
L′,L′′

QRL′CL
L′,L′′

× 4π(2l′′ − 1)!!
(2l − 1)!!(2l′ − 1)!!

δl′′,l+l′
∑
L′′′

SL′′,L′′′(R′ −R+ bRR′)QR′L′′′ , (20)

and it can be completely described in terms of the multipole moments defined
as

QRL =
√
4π

2l + 1

∫
ΩR

nR(rR) YL(r̂R)
(rR

S

)l
drR − δL,(0,0) ZR

= QRL(SC
R ). (21)

In (20) SL,L′(R) are the conventional LMTO structure constants and R′

runs over the lattice vectors. The displacement vector bRR′ has to be chosen
in such a way that the circumscribed spheres of the cells in question do not
intersect each other (here we assume that the directions of bRR′ and R′ −R
coincide)

|R′ −R|+ bRR′ > Sc
R + Sc

R′ . (22)

For the cells with nonoverlapping bounding spheres we can choose bRR′ = 0
so the equation (20) reduces to the well-known form

F inter,no
R [Q] = − 1

2S

∑
L

QRL

∑
Rno,L′

SL,L′(Rno)QRnoL′ (23)

where Rno runs over the cells with nonoverlapping bounding spheres.
For neighbouring cells with overlapping bounding spheres bRR′ according

to the inequality (22) has to be nonzero. Furthermore, as was pointed out
by Gonis et al. [33], the outer sum (over l) is conditionally convergent and
for a fixed value of the upper limit of the summation over l′, l′′′, it may start
to diverge above a certain value of l thus defining a range of convergence
of the summation. It was also shown that the range of convergence for the
summation in (20) depends sensitively on the choice of bRR′ [33]. For larger
values of bRR′ the sum converges more slowly, but the range of convergence
is wider. Therefore we expect an optimal value for bRR′ to exist , which
is large enough to satisfy (22) and to ensure a wide range of convergence
but at the same time the summations over l converge rapidly allowing us
to use a reasonably low lmax value in the actual calculations. The choice
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bRR′ = |R′ −R| proposed by Gonis et al. [33] is suitable for cubic systems
[17,18]. However, for a crystal with lower symmetry it may happen that the
convergency ranges for different neighbours do not even overlap with this
choice of bRR′ (e.g. for a tetragonal lattice with large c/a ratio). We have
solved this problem by choosing the displacement vector equal to the radius
of the circumscribed sphere Sc

R.
On the basis of a simple model [34], described in Appendix B, we have

shown that the displacement vector is related to the circumscribed spheres
radii as

bRR′ + |R′ −R| = (1 + α)(Sc
R + Sc

R′), (24)

where α is a small positive number which determines the ratio between the
maximal orbital quantum numbers included in the outer and inner summa-
tions, i. e.

lmax/l
′
max � α. (25)

In order to ensure similar accuracy for different neighbours we have to choose
α = const. We can see that the limit where α tends to zero corresponds to
the lower limit of bRR′ + |R′ −R| in the inequality (22), but in this case the
inner summation should go to infinity. For finite l′max, bRR′ + |R′ −R| has to
be chosen according to (24) above its lower limit to assure the convergency
of the inner summation for any l. With decreasing α, the number of terms
in the outer sum decreases. On the other hand, with decreasing α, we need
more and more multipole moments in the calculation of the inner sum. By
choosing the coordinate system with z axis pointing in the direction of the
neighboring atomR′ the summations in (20) can be evaluated efficiently even
for very high lmax values. Therefore, it is preferable to choose relatively high
α values in order to minimize the computer time needed for the calculation
of the multipole moments.

In order to test the accuracy of the intercell energy term evaluated by Eq.
(20) and using for the displacement vectors the recipe given in (24) and (25)
we calculated the Coulomb energy of a homogeneous charge distribution of
several lattices with different symmetry. In these calculations we took α = 0.5
and lmax = 20 − 22. The scaled Coulomb energies −ECoulomb/(Z2/S), i.e.,
the average Madelung constants are plotted in Fig. 3 as a function of lmax for
cubic, tetragonal, α−Np and α−Pu structures. The exact results obtained
by the Ewald technique are also indicated in the figure. For the intracell
Coulomb energy given in (17) and for the intercell Coulomb energy for cells
with nonoverlapping bounding spheres (23) the converged values were used
for any lmax.

We can see from the figure that the results converge to the exact values
smoothly in each case, indicating that using (24) the sums over l converge
simultaneously for different neighbouring cells. The relative deviations from
the exact values are less than 0.03% for lmax = 20 in each case.
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Fig. 3. The scaled average Coulomb energy per cell of a homogeneous charge dis-
tribution (Madelung constant) of (a) simple, face-centered and body-centered cubic
and (b) tetragonal, α − Np (oP8) and α − Pu (mP16) structures as a function of
lmax. For the tetragonal lattice c/a = 1.5 was used. The exact values for the Made-
lung constants obtained by the Ewald procedure are indicated by dashed lines.

3 Construction of the Charge Density

It was shown by Andersen et al. [9,35] that even for open structures such as
the diamond structure one may obtain good charge densities by means of an
LMTO-ASA potential. In their approach, however, the output charge density
is given in a multi-centre form which requires double lattice summations and
is therefore less suitable in total energy calculations. Our aim is to rewrite
the output ASA charge density in a one-centre form (5). This expression is
simple to evaluate and well suited for the integration in the Wigner-Seitz cell
at R.

The muffin-tin (MT) orbitals for the low l orbital quantum numbers are
defined as [35]

χRL(ε, rR) = YL(r̂R)
{

ϕRl(ε, rR) + PRl(ε)jl(κ, rR) for rR ≤ SR

nl(κ, rR) for rR > SR,
(26)

where ϕRl(ε, rR) is solution of the radial Schrödinger equation, κ2 ≡ ε − v0
is the ”kinetic energy in the interstitial region”, jl and nl are, respectively,
regular and irregular solutions at the origin of the radial wave equation for
the constant potential v0 (the muffin-tin zero), and PRl(ε) is the potential
function. In a standard self-consistent calculation only the s, p, d(and f) par-
tial waves are included in the basis set, therefore in (26) l ≤ lmax = 2(or
3).
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The trial wave function for the energy ε is set up as the linear combination
of the MT orbitals

ψ(ε, r) =
∑
RL

χRL(ε, rR)uRL. (27)

The expansion coefficients uj
RL as well as the energies εj are determined

from the condition that the wave function ψ(ε, r) should be a solution of the
Schrödinger equation for the muffin-tin potential

vR(rR) =
{

vR(rR) if rR ≤ SR

v0 if rR > SR
. (28)

In order to set up algebraic formulation of this condition we expand the tails
of the nL(κ, rR) ≡ nl(κ, rR)YL(r̂R) envelope functions arround the site R′ in
terms of the jL′(κ, rR′) ≡ jl′(κ, rR′)YL′(r̂R′) functions, i.e.

nL(κ, rR) = −
∑
L′

jL′(κ, rR′) SR′L′,RL(κ). (29)

Here the expansion coefficients are the well known structure contants. It is
very important to note that for each l the l′ summation in (29) goes to infi-
nity, and, because at high orbital quantum numbers the centrifugal potential
becomes dominant, all the high l′ terms from the right hand side of (29) are
solutions of the Schrödinger equation.

For the energies εj where nontrivial solution of the secular or tail cancel-
lation equation exists the multi-centre form of the wave function (27) inside
the MT sphere at R′ reduces to the one-centre form

ψ(εj , rR′) ∼
∑
L′

ϕR′L′(εj , rR′)uj
R′L′ if rR′ ≤ SR′ . (30)

This is the expression that is used during the self-consistent iterations. In (30)
two significant approximations have been made: i) the use of the incorrect
basis functions in the overlap region, and ii) the neglect of the high l′ terms
in the expansion (29).

In the case of overlapping spheres, there is, in the region of overlap, an
uncancelled remainder which is the superposition of the functions

fRL(ε, rR) ≡ χRL(ε, rR)− nL(κ, rR) = fRl(ε, rR)YL(r̂R)ΘR(rR) (31)

coming from the neighbouring sites [35]. Here,
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fRl(ε, rR) = ϕRl(ε, rR) + PRl(ε)jl(ε, rR)− nl(ε, rR), (32)

and ΘR(rR) is a step function, which is 1 inside and zero outside the MT
sphere at R. Thus, in the case of overlapping spheres centered at R the wave
function at R’, i.e. rR′ ≤ SR′ , should be corrected as [35]

ψ(εj , rR′) ∼
∑
L′

ϕR′L′(εj , rR′)uj
R′L′ +

∑
R

∑
L′

fRL′(εj , rR)u
j
RL′ . (33)

In Ref. [20] we describe a method whereby the f function can be included
in the one-centre form of the charge density. In many systems we found that
this correction is negligible compared to the effect of the high l′ terms from
the expansion (29). Therefore, here we focus on these terms and present a
technique how the high tail components can be taken into account when the
one-centre charge density is constructed.

Including the high l′ terms in (29) the approximate wave function can be
written in the following simple one-centre form

ψ(εj , rR′) =
∑
L′

ϕR′L′(εj , rR′)uj
R′L′ −

∑
L′

′
jL′(κj , rR′)uj

R′L′ , (34)

where the second summation includes only terms with l′ > lmax. This expres-
sion is valid inside and outside of the MT spheres as well. When rR′ > SR′

the partial waves ϕR′l′ has to be substituted by the proper free electron so-
lution nl′ −PR′l′jl′ . In (34) we have extended the definition of the expansion
coefficients for the high l′ quantum numbers, i.e.,

uj
R′L′ ≡

∑
RL

SR′L′,RL(κj)u
j
RL for l′ > lmax and l < lmax. (35)

In this expression the off-diagonal (l′ > l) structure constants are involved. In
the conventional, unscreened, MTO method the calculation of these matrix
elements is obvious. In the case of tight-binding representation the high-
low subblock of the structure constants is constructed using the so called
”blowing-up” technique [7]. The screening parameters for the high l indices
are set to zero, and therefore the internal l′′ summation in the Dyson equation
[7], written for the high-low subblock,

Sα
R′L′,RL(κ) = S0

R′L′,RL(κ) +
∑
R′′L′′

S0
R′L′,R′′L′′(κ)αR′′L′′Sα

R′′L′′,RL(κ) (36)
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is truncated at l′′max = lmax. Therefore, having the low-low subblock of the
screened structure constant and using the high-low unscreened matrix ele-
ments, S0

R′L′,RL we can determine by simple matrix multiplication the high-
low block of the screened structure constants.

The one-centre form of the charge density can be obtained from Eq. (34)
and (35). Using a compact notation for the radial functions, i.e.

φRl(ε, rR) =
{

ϕRl(ε, rR) if l ≤ lmax
−jl(κ, rR) if l > lmax,

(37)

we obtain the following expression for the partial components of the full
charge density

nRL(rR) =
∑
L′′L′

CL
L′′L′

occ.∑
j

φRl′′(εj , rR)uj∗
RL′′ uj

RL′φRl′(εj , rR), (38)

where CL
L′′L′ are the real Gaunt numbers. In (38) both l′′ and l′ summations

includes all the terms up to l′max > lmax. Similar expressions valid for the
LMTO basis set are given in Appendix C. In practical applications we found
that for an accurate representation of the non-spherical charge density l′max
should be about 8− 12 depending on the structure.

When both the overlap correction (33) and the high l′ tails (34) are inclu-
ded in the charge density besides the terms from (38) or (64) and those from
Ref. [20] one has to include the cross terms, fRL′′jL′ and jL′′fRL′ as well.

In Fig. 4 we present charge density contour plots for hexagonal graphite
calculated at the theoretical equilibrium volume using Eq. (64) given in Ap-
pendix C. From a comparison of the present plots withthose calculated using a
full-potential method [36], we can conclude that the effect of the non-spherical
potential terms, neglected in the present self-consistent LMTO calculation,
have minor effects on the valence charge distribution. The ASA potential de-
scribes very well the strongly covalent double humped character of the C-C
bonds in the hexagonal graphite. Futher examples of the application of the
above technique for the calculation of charge densities are given in Refs. [20,
37].

Finally we note that, because the high l′ tails and the shape of the cell
are neglected during the self-consistent iterations, the total charge density
given by (5) and (38) will not be exactly normalized within the Wigner-
Seitz cell. This difficulty can be overcome by a simple spherical symmetric
renormalization of the charge density within the cells.

4 Shape Function Technique

In order to calculate the different energy terms discussed earlier, we need
a technique to integrate over the W-S cell. To carry out this integration
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Fig. 4. Charge density contours (in electron/a.u.3) of the hexagonal graphite within
an atomic layer (left) and in a plane perpendicular to the layers (right). The density
was calculated by the TB-LMTO using the one enter form (64).

we use the so-called shape function technique [2,17,32] which was recently
implemented by Drittler et al. [38] in their development of a full-potential
Korringa-Kohn-Rostoker multiple scattering method. An alternative scheme
to treat interstitial integrals has been proposed by Savrasov and Savrasov [15].
Here, we apply the original version of the method and define the following
shape function
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σR(rR) =
{
1 for rR ∈ ΩR

0 otherwise (39)

which can be expanded in terms of real harmonics

σR(rR) =
∑
L

σRL(rR)YL(r̂R). (40)

Here σRL(rR) are the partial components of the shape function. By means of
the shape function any integral over the W-S cell may be transformed into
an integral over the sphere which circumscribes the cell, i.e.

∫
ΩR

nR(rR) K[n] drR =
∫
Sc

R

σR(rR) nR(rR) K[n] drR. (41)

Here K[n] can be an arbitrary functional of electron density, for example, the
kinetic and exchange-correlation energy density from Eqns. (10,13,14), or the
Coulomb potential from Eq. (16), etc. The quantity σR(rR) nR(rR) can be
expanded in terms of real harmonics

σR(rR) nR(rR) ≡
∑
L

ñRL(rR)YL(r̂R), (42)

where the partial radial functions represent the YL(r̂R) projections of the
charge density on a spherical surface that lies inside the Wigner-Seitz cell.
These functions are used in Section II in the evaluation of the Coulomb
energy. In terms of the partial components of the shape function and of the
charge density they can be expressed as

ñRL(rR) =
∑
L′,L′′

CL
L′,L′′nRL′(rR)σRL′′(rR), (43)

where CL
L′,L′′ are the real Gaunt coefficients.

4.1 Evaluation of the Shape Functions

In order to determine the partial components of the shape function (39)

σRL(rR) =
∫

σR(rR)YL(r̂R)dr̂R, (44)
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we divide the polyhedron, generated by the well-known Wigner-Seitz ap-
proach, into Nt tetrahedra, and we choose a local coordinate system for each
tetrahedron. Thus the two dimensional surface integral in (44) may be per-
formed only for the non-equivalent tetrahedra of number Nn, and the total
shape function is obtained as

σRL(rR) =
Nn∑
t

Ne(t)∑
i

∑
m′

Dl
m m′(αi, βi, γi)σt

Rlm′(rR), (45)

where Dl
m m′ are the matrix elements of finite rotations defined, for example,

in Ref. [39], and αi, βi, γi are the Euler angles of the local coordinate system
associated with the tetrahedron i. In (45) Ne(t) denotes the total number of
tetrahedra of type t, i.e.

∑Nn

t Ne(t) = Nt.
The angular integration for each non-equivalent tetrahedron was perfor-

med by integrating analytically over θ and numerically over φ, as described
by Stefanou et al. [40]. In this way we managed to achieve both high accu-
racy and efficiency, and thus develop a general algorithm for determining the
shape function from the neighboring lattice vectors for an arbitrary structure.

In Fig. 5 we show the L = (0, 0), (4, 0), (4, 4), (10, 0) and (14, 0) partial
components of the shape function for the bcc structure as a function of r in
units of the lattice constant a. Apart from the spherical component σ(0,0)(r),
all the other terms are zero inside the inscribed sphere and outside the circum-
scribed sphere. The partial components of the shape function and their deri-
vatives have kinks at the points where the sphere of radius r passes through
a face, an edge or a corner of the polyhedron. In order to ensure the required
accuracy in the radial numerical integration we take these points as mesh
points.

The partial wave expansion of the shape function (40) oscillates strongly
and its convergence towards the step function is rather slow. The insert in
Fig. 5 shows the relative error of the volume between the Wigner-Seitz cell
and the inscribed sphere, calculated as

VΩ−Si =
∫
Sc

σ(r) σ(r) dr−
∫
Si

σ(r) σ(r) dr

=
∑
L

∫ Sc

Si

σ2
L(r) r

2 dr ≡
∑
l

dl. (46)

As it can be seen from the figure the relative error for lmax = 30 is still
very high (4.2%). However, the partial components exhibit several oscillations
within the interval r ∈ (Si, Sc) and the number of oscilations increases with
the orbital quantum numbers. Therefore, the quantities derived from the
shape function by integration like (41) are well behaved, as it can be seen
from Fig. 2, where the Hartree energy of fcc Cu is shown as a function of lmax
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Fig. 5. The partial components of the bcc shape function for L =
(0, 0), (4, 0), (4, 4), (10, 0) and (14, 0) as functions of the radius. In the insert the
relative error (VΩ−Si − ∑lmax

l dl)/VΩ−Si (see Eq. (46)) is shown for different lmax

values.

used in (17) or equivalalently in (43). The figure illustrates that a resonable
accuracy is achieved already for lmax = 8− 12.

5 Discussion

In this section we review and discuss through several examples some impor-
tant calculational details related to the FCD total energy calculations. In the
self-consistent procedure we solve the scalar-relativistic Dirac equation using
either the hamiltonian or the Green’s function formalism. In the former de-
scription the so called combined correction term [3,5,9] is included. The core
electrons are treated within the frozen core approximation, and the semi-core
states are included in a second energy panel. In this panel all the l chanels,
except that corresponding to the semi-core states, are downfolded [7,8]. In the
upper energy panel the inactive chanels are dow-folded. This procedure ac-
counts correctly for the important weak hybrization in the occupied parts of
the bandstructure and reduces the rank of the eigenvalue problem to that of
the number of active orbitals. Moreover, in this way we manage to avoid the
numerical difficulties that arises by fixing the expansion parameter εν Rl in a
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different position than the center of the occupied part of the corresponding
chanel.

Fig. 6. Equilibrium Wigner-Seitz radii of the light actinides obtained by the full
charge density method. The calculations are performed in the LDA or the GGA
for the crystallographic α-phases indicated in Pearson notation at the top of the
figure. The measured room temperature values are corrected to T = 0K using the
measured mean thermal expansion coefficients.

As an illustration of this problem we consider the light actinides in the
low temperature α phases. The uncorrected ASA fails [37] in the case of these
open systems and, therefore, a more accurate and, at the same time, efficient
approach is needed. In Fig. 6 we show the equilibrium Wigner-Seitz radii for
the light actinides calculated by the present method using either LDA [41,42]
or GGA [29] exchange-correlation energy functionals. The crystallographic
α phases are indicated in the top of the figure. To obtain fully converged
binding energy curves with a proper minimum for the light actinide metals
in the FCD method the 6p states must be included in the first energy panel
and the 7p states in a second energy panel. In the first panel we down-
folded the s, d and f states and in the second only the p states. For all the
active and inactive orbitals the εν was fixed at the center of the occupied
part of the corresponding band. We have found that the GGA results are
on average only 1.3% larger than the zero temperature experimental values.
This slight overestimate of the equilibrium volume is a common feature of
the GGA functional observed in the case of the transition metals as well [22].
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We note that the agrement between the LDA results and the experimental
values is very good at the beginning of the series but the experimental trend,
reproduced by the GGA, is not properly described by the LDA functional.
In order to see the effect of the inactive 7p band we fixed εν 7p at the center
of the 7p band, thereby reducing the theoretical LDA atomic radius for Th
by 2%. Throughout the actinide series the 7p band ascends and the errors
related to fixing εν become smaller. Hence, an incorrect parametrization of
the LMTO basis can alter the theoretical trend provided by the FCD method.

The number of orbitals or basis functions that should be considered in the
solution of Schrödinger’s equation for a crystal potential is one of the basic
problems in any band structure calculation method. A low cutoff in the orbi-
tal quantum number, i.e., a low lmax in (26), prefered in the secular equation,
does not always quarantee basis set convergency. Regarding the present me-
thod, in several applications we found that the total energy evaluated form
the total charge density represents a better basis-set convergence compared
to the ASA total energy. In other words, in the case of the transition metals,
for example, the inclusion of the f orbitals has a relatively small effect on the
FCD total energy, while the ASA total energy can be affected by about 40%
[17,18]. This is illustrated in Fig. 7, where we plotted the surface energies of
the 4d transition metals obtained for the close packed fcc (111) surface by
means of the LMTO-ASA and FCD methods. The two sets of results corre-
spond to s, p, d and s, p, d, f basis sets. The isotropic experimental values are
taken from Ref. [43]. The ASA surface energies and the surface full charge
densities, needed for the FCD surface energies, were calculated by means of
the self-consistent surface Green’s function technique implemented by Skriver
and Rosengaard [44]. Details of this calculation can be found in Refs. [17,23].
As it can be seen from the figure, the two sets of FCD results are very close
to each other, and in fact they follow the experimental trend. In the ASA
calculation the inclusion of the f orbitals has a strong negative effect in the
total energy of surface layers. This is due to the fact that in a conventional
ASA method the tail expansion (29) is truncated at the same lmax as is used
for the muffin-tin orbitals. In the FCD technique the truncation in Eq. (29)
is always higher than the one in Eq. (26).

The kinetic and exchange-correlation energy functionals used within the
FCD technique involve the functional derivatives of the energy densities,
see Eq. (9). The first order functional derivative of the exchange-correlation
energy, for example, is the well known exchange-correlation potential, µxc,
etc. Some of the parametrized density functionals, however, have different
analytical forms for different densities or density gradients, which matches
continuously. As a result, they may display an artificial discontinuity in the
second or higher derivatives with respect to density or gradient and cannot
be applied in conjunction with (9) and (10) which requires simple analytic
representations of the exchange-correlation and kinetic energies. Therefore,
in the actual applications the exchange-correlation energy is evaluated using
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Fig. 7. Comparison of the surface energies obtained using the full charge density
LMTO and the LMTO-ASA methods for the fcc (111) surface of the 4d element.
The dashed lines connect the result obtained on the s, p, d basis set, and the solid
lines those obtained by inclusion of the f orbitals. The experimental results by de
Boer et al. are also shown.

either the LDA functional by Perdew and Wang [45], or the GGA functional
by Perdew et. al [29,46], while the kinetic energy correction, Eqns. (10-13), is
evaluated using either the gradient expansion (47) or the Pade’s form (52).

In the FCD technique Poisson’s equation is solved exactly and, hence, the
Coulomb energy is calculated exactly from the total, non-spherical charge
density. Moreover, within the LDA or GGA the exchange-correlation energy is
also evaluated exactly, and the kinetic energy is corrected for the nonspherical
effects. However, the ASA part of the spherical kinetic energy contribution
(11) reflects the accuracy of the ASA potential, e.g., how well the spherical
part of the full-potential is described by the ASA potential inside the atomic
sphere. In open structures with large overlap between the atomic spheres the
ASA does not work well and one has to introduce empty spheres into the
structure to reduce the overlap and maintain the accuracy of the ASA. As an
example of such a system we consider hexagonal graphite, where we include
8 empty spheres in the unit cell in addition to the 4 C spheres.

The contour plot of the graphite charge density is shown in Fig. 4. Inclu-
ding 8 empty spheres the true charge density, obtained by the full potential
method [36], is equally well reproduced in the C-C direction, in the centre
of the hexagonal arrangement of the C atoms and between the atomic layers
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Fig. 8. The total energy of hexagonal graphite as a function of the c/a ratio obtai-
ned by means of the full charge density LMTO method.

as well. The equilibrium Wigner-Seitz radius and bulk modulus obtained by
the present calculation are 1.601 a.u. and 3.32 Mbar within the LDA, and
1.618 a.u. and 3.07 Mbar within the GGA, respectively. These numbers are
only in moderate agreement with the experimental values, 1.67 a.u. and 2.86
Mbar [36], and with the full potential results from Ref. [47], 1.68 a.u. and
2.36 Mbar. However, when the c/a ratio is considered, our LDA value shown
in Fig. 8 is in very good agreement with both the experimental, 2.72 and full
potential value, 2.77 from Ref. [36]. The c/a ratio in the present work was
calculated by minimizing the total energy with respect to the c/a at constant
volume, like in Ref. [36], and, therefore, it reflects only partially the C-C
interlayer bonding.

6 Conclusions

We have presented a full charge density technique based on the complete
charge density from a self-consistent LMTO calculation employing a spheri-
cally symmetric ASA potential. In the calculations, besides the exact Cou-
lomb and excha-
nge-correlation terms within LDA or GGA, we include a correction to the
ASA kinetic energy, which means that we evaluate the true functional rat-
her than an ASA functional. The technique has been tested through several
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calculations for systems where the conventional ASA method fails [18,20,22,
23,37]. The comparison with the experimental values and with full poten-
tial results shows that the FCD technique has an accuracy similar to that
of a full potential description, while the required computational effort is not
significantly larger than in conventional spherically symmetric LMTO-ASA
calculations.
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8 Appendix A

The starting point for the kinetic energy correction is the density-gradient
expansion of the noninteracting kinetic energy functional [28]

T [n] = T (0)[n] + T (2)[n] + T (4)[n] + ... (47)

with

T (2k) =
∫

t(2k)(r)dr. (48)

Here, t(2k) is a kinetic energy density which ( in atomic Ry units ) has the
following explicit forms

t(0) =
3
5
(3π2)2/3 n5/3, (49)

t(2) =
1
36
(∇n)2

n
, (50)

t(4) =
1

370(3π2)2/3

[(
∇2n

n

)2

− 9
8

(
∇2n

n

)(
∇n

n

)2

+
1
3

(
∇n

n

)4]
. (51)

for k = 0, 1, 2. This expansion is valid for slowly varying or high densities,
i.e. when s ≡ |∇n|/n4/3 � 1. For high values of s the expansion diverges
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and, therefore, other approximate functional forms should be considered. In
the locally truncated expansion suggested in Ref. [48] the number of terms
included in the series is determined in each point in space by a local criterion
based on the properties of an asymptotic series. In practice, this means that
in regions of high gradients the functional reduces to the Thomas-Fermi form,
which, obviously, represents a poor approximation to the real kinetic energy
density. In Ref. [49] we showed that the local inclusion of the von Weizsäcker
term, tW = 9t(2), rather than the Thomas-Fermi term, gives resonable accu-
rate results in the large gradient limit as well. The parametrized form of this
kinetic energy functional is

t3,2 = t(0)
1 + 0.95x+ 9ax3

1− 0.05x+ ax2 , (52)

where x = (5/27)s2. The parameter a was determined using the exact Kohn–
Sham kinetic energies for the jellium surface [50], and we found a = 0.396
[49].

9 Appendix B

To find a reasonable choice for the displacement vector introduced in Eq.
(20) we have calculated the electrostatic interaction energy of two truncated
spheres of radius Sc with a uniform charge distribution n0, separated by a
distance d [34]. In the case of overlapping bounding spheres, d < 2Sc, the
intercell energy (20) is given by

F inter[{Ql}] =
∑
l

(
bd

bd + d

)l∑
l′,l′′

Ql′

× (l + l′ + l′′)!
l!l′!l′′!

1
(bd + d)l′+l′′+1Ql′′ . (53)

For nonoverlapping spheres, d ≥ 2Sc, this expression reduces to the form

F inter,no[{Ql}] =
∑
l,l′

Ql
(l + l′)!

l!l′!
1

dl+l′+1Ql′ (54)

where Ql stands for the l-th multipole moment

Ql =
2πn0

l + 3
(Sc)l+3

∫ d
2Sc

−1
Pl(x)dx +

2πn0

l + 3

∫ 1

d
2Sc

(
d

2x

)l+3

Pl(x)dx. (55)
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Here Pl(x)’s are the Legendre polynomials. We mention that owing to the
axial symmetry of the system the multiple moments vanish for m �= 0.

The necessary condition for the convergency of the outer sum in (53) is
the convergency of the inner sums over l′ and l′′ for each value of l. The
diagonal terms of the inner sum in (53):

Al′l′ = Ql′
2 (l + 2l′)!

l!(l′!)2
1

(bd + d)2l′+1 (56)

have a maximum around l′ = l̃ for l, l′ � 1

l̃(l) = l

Ql̃+1
Ql̃

bd + d − 2
Ql̃+1
Ql̃

. (57)

From (54) we can estimate the upper limit for the ratio of the multipole
moments Ql+1

Ql
since this sum is always convergent for d ≥ 2Sc (similar result

can be obtained from (55)). Therefore for higher l values we have

Ql+1

Ql
< Sc (58)

and for l̃ we obtain

l̃(l) < l
Sc

bd + d − 2Sc
≡ 1
2α

l. (59)

Thus we see that the individual terms in the inner sum show a maximum,
which (strictly speaking its upper bound) is proportional to l and the coeffi-
cient α depends on bd. In order to ensure the required accuracy of the inner
sum it is reasonable to assume that the summation should be carried out at
least up to l′max � 1

α l > 2l̃(l) for any l; it is easy to show that in this case
for the neglected terms in the inner summmations Al′l′

Al̃l̃
< 1%. This should

hold for the largest value of l as well, i.e. lmax = αl′max, and we obtain the
relation

bd + d = (1 + α) 2Sc. (60)

The validity of this choise of the displacement vector should hold for realistic
systems as well because in (58) for the ratio of the multipole moments we use
an estimate which is independent on the shape of the cell and on the charge
distribution. We note that Eq. (24) is a generalization of (60).
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On the basis of (60) we can explain the existence of the range of con-
vergence in the outer summation. For a fixed value of l′max it is obvious
that with increasing l, we start to neglect significant terms in the inner sum-
mation if 1

α l > l′max which may lead to the divergence of the outer sum.
Therefore an upper limit of the range of convergence in l may be defined as
l′max

(
bd+d
2Sc − 1

)
. Thus with increasing bd the range of convergence becomes

wider in accordance with the observation by Gonis et al. ([33]).

10 Appendix C

In the linear muffin-tin orbitals method [1,2,3,4,5,6,7,8,9] the lower part of the
tail functions are substituted (taking into account the normalization function)
by the first energy derivative of the partial wave, ϕ̇γ calculated at the center
of the energy range of interest, εν . In this way the LMTO’s become energy
independent up to the second order and the summation over the occupied
states in (38) can be evaluated separately. The energy dependence of the
envelope functions within the LMTO formalism is fixed at κ2 = 0. In the
following we use the nearly orthogonal representation (γ) but the relations
can easily be generalized to other representations.

The second order expression for the wave function (34) that includes the
high tail contributions becomes

ψ(εj , rR′) =
∑
L′
[ϕR′L′(rR′) +

1
2
(εj − εν R′l′)2ϕ̈R′L′(rR′)]uj

R′L′

+
∑
L′

j̃γR′L′(rR′)ũj
R′L′ , (61)

where ϕ̈ denotes the second order energy derivative. The first summation
includes terms up to the lmax ≤ 2(or 3), while the second summation includes
all the high l′ tail components as well. In (61) we have introduced a compact
notation for the tail functions

j̃γR′l′(rR′) =
{

ϕ̇γ
R′l′(rR′) if l′ ≤ lmax,

jl′(rR′) if l′ > lmax
, (62)

and for the eigenvectors

ũj
R′L′ =

{
(εj − εν R′l′)u

j
R′L′ if l′ ≤ lmax,

−∑RL Sγ
R′L′,RL

1√
S
2 Ṗγ

Rl

uj
RL if l′ > lmax

(63)

In (61) the partial waves, their energy derivatives and the energy derivative
of the potential function are calculated at ε = εν . Now we can write the
expression for the partial components of the full charge density,
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nRL =
∑
L′′L′

CL
L′′L′ [ϕRl′′ϕRl′m

0
RL′′L′ + ϕRl′′ j̃

γ
Rl′m

1
RL′′L′

+
1
2
ϕRl′′ ϕ̈Rl′m

2
RL′′L′ ++j̃γRl′′ϕRl′(m1

RL′L′′)∗

+
1
2
ϕ̈Rl′′ϕRl′(m2

RL′L′′)∗ + j̃γRl′′ j̃
γ
Rl′m

3
RL′′L′ ], (64)

where for simplicity we have neglected the radial variable rR, and

m0
RL′′L′ =

occ.∑
j

uj∗
RL′′u

j
RL′ if l′′, l′ ≤ lmax,

m1
RL′′L′ =

occ.∑
j

uj∗
RL′′ ũ

j
RL′ if l′′ ≤ lmax,

m2
RL′′L′ =

occ.∑
j

uj∗
RL′′(εj − εν Rl′)2u

j
RL′ if l′′, l′ ≤ lmax,

m3
RL′′L′ =

occ.∑
j

ũj∗
RL′′ ũ

j
RL′ .

In (64) the l′′ and l′ summations include the high tail components as well,
however, for these high indices the ϕ and ϕ̈ should be set to zero.

The high-low block of the structure constant Sγ can be calculated using
the Dyson equation

Sγ
R′L′,RL = Sα

R′L′,RL +
∑
R′′L′′

Sα
R′L′,R′′L′′(γR′′l′′ − αR′′l′′)S

γ
R′′L′′,RL, (65)

where γR′′l′′ = αR′′l′′ = 0 for l′′ > lmax, and the high-low subblock of the
tight-binding LMTO structure constant Sα is obtained from (36) written for
κ2 = 0.
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Abstract. The paper presents a recently developed full-potential linear muffin-tin or-
bital (FP-LMTO) method which does not require empty spheres and can calculate
the forces accurately. Similar to previous approaches, this method uses numerical in-
tegration to calculate the matrix elements for the interstitial potential, which is the
limiting step for any FP-LMTO approach. However, in order to reduce the numerical
effort as far as possible, we use a newly introduced basis consisting of “augmented
smooth Hankel functions” which play the role of the LMTO envelope functions. After
presenting the basics of the approach, we report the results of numerical test for typical
condensed-matter systems. The calculations show that good accuracy can be reached
with an almost minimal basis set. These features of the method open the way to ef-
ficient molecular dynamics studies and simulated-annealing calculations to optimize
structures while retaining the advantages of the LMTO method.

1 Introduction

The linear muffin-tin orbital (LMTO) method [1] has played a very successful
role among the various techniques for solving the density-functional equations [2]
for a condensed-matter system. Two characteristic features of this approach are
(i) the use of atom-centered basis functions of well-defined angular momentum,
constructed out of Hankel functions, and (ii) the use of augmentation to in-
troduce atomic detail into the basis functions in the vicinity of each nucleus.
Overall, the rationale behind this approach is to construct basis functions which
closely resemble the actual wavefunctions from the very beginning. The conse-
quence is that a comparatively small basis set already leads to a converged total
energy, hopefully giving rise to substantial reductions in the computation time
and the storage requirements.

In general term, when using a sophisticated basis in this manner, it is not
a priori clear that these savings will actually be the realized. The price for a
more sophisticated basis set is an increased computational effort in some steps
of the calculation. This extra effort may or may not cancel out the gain due to
the reduced basis size. For the LMTO method, the balance is no doubt positive
if the atomic-sphere approximation (ASA) [3] is used. Hereby the single-electron

H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 114−147, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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potential is modeled by a superposition of spherical potentials inside overlap-
ping space-filling spheres. Where this approximation is applicable, the LMTO-
ASA method is presumably the most efficient procedure available for solving the
density-functional equations to a reasonably high degree of accuracy. However,
a “full-potential” treatment which goes beyond the ASA is needed for many
systems of interest. Typical examples are the total energy changes associated
with phonons distortions and atomic relaxations, say at a surface or around an
impurity. Furthermore, for low-symmetry situations the LMTO-ASA method
becomes unwieldy as the question of “empty spheres” to improve the packing
fraction becomes more important. Finally, since the energies associated with such
distortions are not reliable, the question of the calculation of the forces on the
atoms does not even arise. However, the forces are precondition for simulated
annealing and molecular dynamics studies in the spirit of the Car-Parrinello [4]
method.

A number of different approaches have been developed in the past to go
beyond the ASA in the LMTO method. Their common element is that the po-
tential is treated correctly within the existing LMTO basis set. Unfortunately,
this has lead to a substantial increase in the computational effort. In the inte-
rest of efficiency, we have explored and implemented a novel approach in which
the LMTO basis functions themselves are modified in a controlled manner. This
has two benefits: the basis set can be even smaller, and the effort for a nume-
rical integration of the potential matrix elements is reduced. At the same time,
a reformulation of the augmentation procedure is required since the standard
structure-constant expansion cannot be used for the modified functions. Tur-
ning this into an advantage, we have used a “projection” description which is
partly based on previous developments due to Blöchl [5] and Vanderbilt [6] but
which includes some new features. Among other benefits, the separation into
a “smooth” and atomic “local” terms is cleaner, leading to a straightforward
expression for the forces.

Overall, the following criteria were considered imperative when developing
this variant of the LMTO method:

• The forces must be calculated.
• All reasonable geometries should be handled without the need for empty

spheres.
• It must be possible to improve the accuracy systematically by turning up

the various convergence parameters.

Within these requirements, it was tried as far as possible to maintain the cha-
racteristic advantages of computational efficiency and small memory demands.

In the rest of this paper, the modified LMTO envelope functions are discussed
in Sect. 2.2. The reformulated augmentation procedure and the force theorem
are described in Section 2.3. Finally, we present some practical experience with
the resulting method in Section 3. Specifically, we investigate the dependence of
the results on the various convergence parameters and compare to calculations
with other methods for a number of realistic systems.
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2 Description of the Method

This section presents the basic ideas behind the method. After a discussion the
central role of the interstitial potential matrix elements, the modified LMTO-
like envelope functions (smooth Hankel functions) are presented. Finally, the
reformulated augmentation procedure and the forces are discussed.

2.1 The Central Role of the Interstitial Potential Integrals

In a density-functional calculation, the three main tasks are (i) to solve the
Poisson equation and to add on the exchange-correlation potential, making the
effective potential felt by an electron, (ii) to solve the single-particle Schrödinger
equation, and (iii) to add together the squared moduli of the wavefunctions to
accumulate the new output density. In most cases, the solution of Schrödinger’s
equation is the most difficult and the most expensive step of these. In fact, if
the potential is to be treated without any further approximation (i.e., in a “full-
potential” method), the main bottlenecks usually turn out to be in two closely
related substeps:

• To set up the Hamiltonian matrix, we require the matrix elements of the
effective potential Veff(r) for the basis functions χi(r):

Vij =
∫
χ∗

i (r)Veff(r)χj(r) dr . (1)

• To obtain the output density, we must sum over the squared moduli of the
wave functions ψn(r):

nout(r) =
∑
nocc

wn |ψn(r)|2 . (2)

Since the wavefunction is a linear combination of the basis functions, the real
task when making the output density is to express the product of any two basis
functions χ∗

iχj in a form suitable for further handling. Specifically, we must be
able to evaluate the integral of this product times the potential, since this is
one important contribution in the total energy. Furthermore, the representation
must “close the loop” so that the output density can be mixed with the input
density and the result fed into the next iteration. In practice, both of the steps
above are essentially the same problem, namely the evaluation of the potential
integrals of (1).

In augmentation approaches such as the LMTO and linear augmented plane-
wave (LAPW) methods [1], space is partitioned into atom-centered muffin-tin
spheres and an interstitial region. The potential integrals split up accordingly
into the integrals over the two types of region. The contributions from the muffin-
tin spheres can be calculates in a straightforward and reasonably efficient manner
since the potential as well as the basis functions can be expressed using one-
center expansions. That is, each function is written in polar coordinates around
the relevant sphere center as a radial part times a spherical harmonic.
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Thus, the term which requires most attention is in fact only the interstitial
contribution to the potential matrix element:

V
(IR)
ij =

∫
IR
H∗

i (r)V (r)Hj(r) dr . (3)

Here the functions Hi(r) denote the envelope functions, i.e., the analytic func-
tions which will be augmented inside the atomic spheres to obtain the final basis
functions χi(r), and IR denotes the interstitial region. This matrix element is
always problematic, independent of the representation chosen for the interstitial
potential. In fact, a major part of devising a viable method is to select a repre-
sentation for the density and the potential which makes it possible to compute
these matrix elements reasonably efficiently. The efficiency of the LMTO-ASA
method is clear: by making the atomic spheres space filling and neglecting the
interstitial potential, the most demanding computational step is eliminated, lea-
ving only terms which can be evaluated in a compact and effective manner.

Basically there are two ways to proceed in a full-potential approach. First,
the potential in the interstitial region can be expanded in some suitable set of
auxiliary functions. For example, a set of atom-centered functions can be used,
which can lead to a very compact representation. Substituting the expansion
under the integral in (3) leads to a sum of integrals, each over a product of three
terms. Unfortunately, such integrals can almost never be evaluated in closed
form (the notable exception is when all terms are gaussians). In our context,
two of the terms are LMTO envelopes, and no reasonable choice of a potential
expansion considered to date leads to a closed form.

Alternatively, the interstitial potential can be specified by tabulating it on a
regular mesh which extends through the unit cell. Equivalently, the coefficients
of the Fourier expansion of the potential can be given. Although such a nume-
rical representation requires more data to specify the potential, there are some
considerable advantages. First, since the exchange-correlation potential must be
evaluated point by point, a mesh representation is needed at some stage in any
case. Second, by using a regular mesh the Poisson equation can be solved easily
using a fast Fourier transform. Third, the additional step of fitting the output
density or the effective potential to the set of auxiliary functions is avoided.
Finally, enhancements such as gradient corrections can be implemented more
easily on a regular mesh than in a more complicated representation. For these
reasons, a real-space mesh representation of the interstitial potential (as well as
the interstitial density) will be used in the following. In effect, we have opted for
a hybrid treatment in which the wavefunctions are represented using a carefully
constructed atom-centered basis set but the interstitial potential and density are
given as numerical tabulations.

At this point, a comparison to different existing methods is in order. The
generally used procedure is to extend the basis functions and the interstitial
potential smoothly through the atomic spheres in some manner, to integrate (3)
over the complete unit cell using these smooth functions, and finally to subtract
off the unwanted contributions inside the spheres in conjunction with the aug-
mentation step. In the full-potential LAPW method, all the involved functions



118 M. Methfessel et al.

are simply plane waves and the integral over the cell can be written down im-
mediately. In the various FP-LMTO approaches, the smooth extension must be
explicitly constructed for the sphere on which the function is the centered. This
can be done by matching an analytical expression (such as a polynomial) at the
sphere radius [7,8] or by using analytical functions similar to ours with a suitable
choice of the parameters [9]. In either case, care must be taken that the resulting
function strictly equals the standard LMTO envelope in the interstitial region.
The alternative approach followed in this paper is to “bend over” the envelope
functions already in the interstitial. As discussed next, this reduces the basis
size and at the same time permits a coarser mesh for the numerical integration.
We note that a completely different approach to the interstitial potential matrix
elements is to re-expand the product of any two envelopes as a sum of auxili-
ary atom-centered basis functions. In this way the integrals over three factors
in (3) are changed to a sum of two-center integrals. The expansion can be ob-
tained approximately by fitting on the surfaces of the muffin-tin spheres [10] or
more accurately for molecules by tabulating the results of a careful numerical
fit [11]. Furthermore, an approach suitable for molecules and polymers has been
developed which handles integrals over the product of three Hankel functions by
expanding two of the terms around the site of the third [12].

2.2 Smooth Hankel Functions

In the following, we present the advantages of an LMTO-like basis consisting of
augmented smoothed Hankel functions. The standard LMTO envelope function
is a Hankel function of a (usually) zero or negative energy parameter times a
spherical harmonic. This object will be denoted as a “solid Hankel function”
in the following. It solves the Schrödinger equation for a flat potential, decays
exponentially at large distances if the energy parameter is negative, and has a
singularity at the site where it is centered. The essence of our modification is to
remove the singularity. The resulting “smooth Hankel function” is smooth and
analytic in all parts of space. When such a function is used to construct the
basis, the parameters can (and should) be chosen so that the functions deviate
from the unsmoothed variants already outside the central atomic sphere. As will
be explained below, this speeds up the calculation for two separate reasons: the
basis can be smaller, and numerical integration can be done using a coarser
mesh.

Basic Properties

The smooth Hankel functions (discussed in detail in Refs. [13,14]) are shown in
Fig. 1 for angular momentum 0, 1, and 2. For large radii, the smooth function
to each angular momentum equals the corresponding standard Hankel function,
showing the same exponential decay proportional to exp(−κr), as specified by
the negative energy parameter ε = −κ2. At smaller radii, the function bends
over gradually until it finally approaches rl close to r = 0. When multiplied by
the spherical harmonic YL(r̂), the result is analytic in all parts of space.
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Fig. 1. Comparison of smooth and standard Hankel functions for l=0 (continuous
lines), l=1 (dashed), and l=2 (dotted lines). The energy ε equals −1 and the smoothing
radius Rsm equals 1.0. For large radii, the smooth and standard functions coincide. Near
the origin, the smooth function bends over gradually until it enters as rl whereas the
standard function has a singularity proportional to 1/rl+1.

Of some importance is the parameter Rsm, denoted as the “smoothing ra-
dius” associated with the function. For practical purposes, the standard Hankel
function and its smooth variant are equal where the gaussian exp(−r2/R2

sm) is
negligible, say for r > 3Rsm When Rsm is increased, the deviation from the
standard function starts at a larger value of r and the resulting function is more
strongly smoothed. Specifically, the value at r = 0 for � = 0 becomes smaller as
the former singularity is washed out more and more.

A central distinction to the standard LMTO envelopes is that two separate
parameters determine the shape of each function. More exactly, the energy para-
meter determines the exponential decay at large radii, and the smoothing radius
determines how strongly the function has been smoothed. Consequently, in order
to tune the function to mimic the true wavefunction as far as possible, both of
these parameters should be adjusted.

As a basis set, these functions combine many of the advantages of Hankel
functions and gaussians. In fact, a smooth Hankel function is a convolution of
these two types of functions. Due to the exponential decay at large radii, they
constitute a numerically more stable and more compact basis than pure gaussi-
ans. In contrast to the standard Hankel functions, they have a smooth nonsin-
gular shape near the origin. Furthermore, many important quantities (such as
two-center integrals) can be evaluated analytically.

Formally, the smooth Hankel functions are defined in the following way. The
usual Hankel function for angular momentum zero is h0(r) = e−κr/r where κ
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defines the decay at large radii. As a function of r = |r| in three-dimensional
space, h0 satisfies the differential equation

(∆+ ε)h0(r) = −4πδ(r) (4)

where ε = −κ2 is the energy associated with the function, here always taken to
be negative. Thus, ∆+ ε applied to h0 is zero everywhere except at r = 0, where
a delta function arises from the 1/r singularity of h0. Expressed differently, h0(r)
is the response of the operator ∆+ ε to a delta-function source term.

To change this standard Hankel function into a “smooth Hankel function”
the infinitely sharp delta function is smeared out into a gaussian:

(∆+ ε)h0(r) = −4πgo(r) . (5)

By defining a suitable normalization of the modified source term
g0(r) = C exp(−r2 /R2

sm), the smooth Hankel approaches the standard function
for large r. As r becomes smaller and reaches the range where g0(r) is non-
negligible, the function h0(r) now bends over smoothly and behaves as a constant
times rl for r → 0.

We will also need smooth Hankel functions for higher angular momenta in
order to construct basis functions for the s, p, d... states. These can be construc-
ted by applying the differential operator YL(−∇) defined as follows. The spheric
harmonic polynomial Y(r) = rlYL is a polynomial in x, y, and z, for example
C(x2 − y2). By substituting the partial derivatives −∂x, −∂y, and −∂z for x,
y, and z, respectively, the required operator is obtained in a straightforward
manner. Applying this operator to the delta function yields point dipoles, qua-
drupoles and so on, and applying it to g0(r) yields smeared-out gaussian versions
of these. Thus the L-th smooth Hankel functions is HL(r) = YL(−∇)h0(r) and
satisfies the differential equation

(∆+ ε)HL = −4πGL(r) = −4πYL(−∇)g0(r) . (6)

A number of important quantities can be calculated analytically for these fun-
ctions, including the overlap integral and the kinetic energy expectation value
between any two functions. They can also be expanded around some point in
the unit cell. For further details, see Ref. [14].

Advantages of Smooth-Hankel Envelopes

The first reason for using the smooth-Hankel basis functions is that this re-
duces the size of the basis set, leading to a substantial gain in efficiency. To
make this plausible, note that the standard LMTO basis functions are in fact
not optimal as a basis for representing the crystal or molecular wave functions.
The main problem is that they are “too steep” in the interstitial region close to
the muffin-tin sphere on which they are centered. This is illustrated in Fig. 2.
The standard Hankel functions solves Schrödinger’s equation for a flat poten-
tial. However, when approaching a nucleus the true crystal potential is not flat
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V0
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r

Fig. 2. Sketch to explain why smooth Hankel functions lead to an improved basis. For
the flat potential V0, the solution of the radial Schrödinger equation Ψ0 is a standard
Hankel function with a singularity at the origin. As the true potential V starts to feel
the attractive nuclear potential, the correct wavefunction Ψ bends over. This beha-
vior already starts outside the muffin-tin radius and is built into the smooth Hankel
functions.

but decreases as it feels the attractive nuclear potential. The curvature of the
wavefunction equals the potential minus the energy which therefore becomes ne-
gative. In response, the wavefunction bends over and changes from exponential
to oscillatory behavior. By using smooth Hankel functions, this typical form is
inherent in each basis function.

This effect can be appreciated by inspecting the way in which the standard
LMTO basis functions combine to describe a crystal wavefunction. Generally the
basis set must include some slowly decaying functions together with others which
are considerably more localized. In the course of the calculation these combine
with opposite signs, in this way modeling the required change of curvature. Using
smooth Hankel functions as envelopes, these already have the correct behavior
and some of the additional localized functions can be left away.

In practice, the amount of gain depends on the type of atom. For the impor-
tant angular momenta, a tripled basis can often be replaced by a doubled set.
Less important channels such as the d states in an sp atom can be described by
one radial function instead of two. An overall reduction by a factor of almost
two is sometimes possible. In the order(N3) steps, the computation time in such
a favorable case divides by eight.
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The second major advantage to using smooth Hankel functions instead of the
standard LMTO envelopes is that the time-consuming matrix elements (3) for
the interstitial potential can be calculated more efficiently. As described above,
the integrals can be obtained by integrating over the complete unit cell using a
regular mesh and subsequently subtracting the contributions inside the spheres.
The danger when calculating three-dimensional integrals using a mesh is that
the computational effort can easily dominate all other steps. To keep the effort
manageable, it is of high priority to make the integrands as smooth as possi-
ble. This can be done by using smooth Hankels as envelopes. As an example,
consider silicon with a muffin-tin radius of 2.2 bohr. For the standard LMTO
basis, the smoothing must be noticeable inside the MT sphere only, demanding
a smoothing radius no larger than 0.6 to 0.7 bohr. Outside the central sphere,
the smooth and conventional Hankel functions are then identical to acceptable
precision. The required integration mesh spacing is approximately 0.35 bohr. If
we permit the functions to bend over outside the MT sphere, we find that the
optimal basis functions have a smoothing radius of about 1.4 bohr. For these
functions, the integration mesh can be twice as coarse. Consequently the number
of mesh points and the computational effort are divided by eight.

At this point it should already be mentioned that in the final implementation,
the matrix elements of the smooth potential are actually calculated in reciprocal
space. While this is at first sight equivalent to a real-space integration, the
important difference is that a different reciprocal-space cutoff can be used for
each function. For integrals involving envelopes with a large smoothing radius,
a small cutoff is adequate. This property is very important for systems such as
an oxygen impurity in silicon. The O basis functions demand a fine underlying
real-space mesh through the unit cell, but this is effectively only used for the O
functions. The effort for integrals between Si functions can be calculated with
the same effort as without the presence of the oxygen atom.

Altogether, a modified basis using “smooth Hankel functions” combines two
major advantages. Since these are more similar to the final wavefunctions, ade-
quate convergence can be attained using a smaller basis set. Secondly, since each
function is smoother, the mesh used to evaluate the potential integral can be
coarser. These effects combine to a substantial saving in computer time. As an
estimate (admittedly for an extremely favorable case), the integration mesh can
be twice as coarse, leading to a saving of about (1/2)3 = 1/8 in the order-3
steps. The basis set will contain something like one-half of the functions needed
without extra smoothing, giving another factor of approximately 1/8. Together,
the computer time is divided by 64. While the overall gain will not be as large
for many systems, a speedup by a factor between 10 to 20 is realistic.

Analytical Two-Center Integrals

In the preceding, it was explained how the smooth Hankel functions help to
evaluate the matrix elements of the interstitial potential more efficiently. In the
course of a calculation, we also require the matrix elements of the kinetic energy
operator and the overlap integrals. A major advantage of the smooth Hankel
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functions is that these integrals can be evaluated analytically. In fact, most two-
center integrals involving these functions as well as gaussians can be obtained in
basically the same way. The idea is to use Parseval’s equality:∫

f1(r)∗f2(r) dr =
1

(2π)3

∫
f̂∗
1 (q)f̂2(q) dq (7)

and the explicit expression for the Fourier transform of a smooth Hankel function
HL(r) located at some site R:

ĤL(q) =
−4π
ε− q2 e

γ(ε−q2)YL(−iq)e−iq·R (8)

where γ = R2
sm/4 is one-fourth of the squared smoothing radius. When two such

expressions are multiplied together, the result can be readily written as a sum of
terms of the same basic form, combined with additional powers of q2 arising from
the Clebsch-Gordon factorization of YL(−iq)∗YL′(−iq). Since the phase factor in
the product is exp[iq · (R1 −R2)], the final result is that the desired integral can
be expressed analytically as a sum of smooth Hankel functions, evaluated for the
connecting vector between the two sites. Hereby the extra powers of q2 mean that
the (only slightly more complicated) functions ∆HL, ∆2HL . . . are also needed.
Furthermore, the resulting expression for the two-center integral is equally valid
for molecular and Bloch-summed functions. In the later case, the only difference
is that Bloch functions are also substituted in the final analytical expression. In
addition to the overlap integrals considered here, integrals involving any power of
the kinetic energy operator −∆ as well as Coulomb integrals can be calculated
analytically in a similar manner. Another related application is to obtain the
coefficients of a local expansion around another site, as described next.

Expansion Around a Site

In order to do perform the augmentation in practice, one of the steps which is
needed is to expand a smooth Hankel function around some point in the unit
cell. Far away from the center, the smooth Hankel function equals the unsmooth
variant and the well-known structure constant expansion for the standard Hankel
functions could be used. On the central sphere, the function is given explicitly by
its definition. It is for sites close to the central sphere, such as nearest-neighbor
atoms, where something new is needed. Here the function generally starts to
bend over and the standard expansion does not apply.

This problem is solved as follows. We define a family of higher-order gaus-
sians GkL(r) by applying differential operators to the seed function g0(r) =
C exp(−r2/R2

sm):

GkL(r) = ∆kYL(−∇)g0(r) . (9)

We can construct biorthogonal polynomials to these functions, i.e., a set of
polynomials PkL(r) with the property∫

GkL(r)Pk′L′(r) dr = δkk′δLL′ . (10)
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In fact, it turns out that PkL is just GkL divided by g0(r) times a normaliza-
tion constant. To expand an arbitrary function f(r) as a sum of the PkL, each
coefficient can be calculated by the integral over f(r) times the corresponding
gaussian:

f(r) =
∑
kL

AkLPkL(r) (11)

where

AkL
=

∫
f(r)GkL(r) dr . (12)

This expansion, when truncated to some low value of k, is considerably more ac-
curate than, for example, a Taylor series. This is because the expansion converges
smoothly towards f(r) in the range where g0(r) is large as more terms are in-
cluded. When f(r) is a smooth Hankel function centered anywhere in space, the
integrals defining expansion coefficients can be done analytically. This supplies
the desired local expansion.

The expansion is used in several different steps, most prominently to augment
the envelope functions. Note that in this procedure, there are two distinct para-
meters which influence the accuracy of the expansion. By choosing a cutoff pmax
for the terms in the expansion, the radial function is represented as a polynomial
of order pmax. The range over which the expansion is accurate is determined by
the smoothing radius Rsm of the projection gaussians GkL. When Rsm is chosen
larger, the expansion can be used over a larger part of space but will not be
as accurate overall for the same value of pmax. Choosing Rsm in the vicinity of
one-third of the muffin-tin radius will usually give a reasonable expansion within
the muffin-tin sphere.

2.3 Augmentation

In the following, we describe the modified augmentation procedure used in the
method. In general terms, the pseudopotential formulation and augmentation
are two competing approaches to introduce atomic detail into the wavefunction
near the nuclei. When a pseudopotential formulation is used, this is implicit:
although only smooth functions are manipulated during a calculation, the true
wavefunctions could be derived from these in a well-defined manner. When aug-
mentation is used, the basis functions are explicitly constructed to show the
required strongly-varying and oscillatory character close to an atom. The first
step is to cut space into atomic spheres and an interstitial region. Throughout
the interstitial region, the basis functions are equal to suitable smooth “envelope
functions” which in the present case are the smooth Hankel functions introduced
above. Inside each atomic sphere, every envelope function is replaced by a nume-
rical solution of the Schrödinger equation. Specifically, in the well-known linear
methods [1], numerical solutions of the Schrödinger equation in the spheridized
potential and their energy derivatives are combined to match smoothly to the
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envelope function at the sphere boundary. Overall, this procedure amounts to a
piecewise definition of the basis function in different parts of space.

Comparing the two approaches, the norm-conserving pseudopotential formu-
lation [15] has a number of advantages, once the initial effort of constructing
the pseudopotential has been completed. Angular momentum cutoffs are gene-
rally low and an expression for the force is easy to obtain. In contrast, since
augmentation works by cutting out the part of space near the nucleus and trea-
ting it separately, quantities must sometimes be expanded to relatively high
angular momenta. Due to the complexity of the augmentation procedure, it is
often difficult to derive a valid force theorem. In practice, the augmentation and
pseudopotential approaches have some similarity. Both methods expand a set of
smooth basis functions by angular momentum around the different sites, then
operate on the different angular momentum components independently. This
suggests that a more unified description should be possible.

With the aim of a practical formulation for all-electron methods which has
the simplicity and transferability of the pseudopotential approach, the formu-
lation of augmentation described in the following shares some aspects with the
projector augmented-wave (PAW) method [5] and has some similarity with Van-
derbilt’s ultrasmooth pseudopotentials [6]. As in the PAW method, “additive
augmentation” is used to reduce angular-momentum cutoffs for the representa-
tion of the wavefunctions, charge density, and potential. However, the present
approach eliminates the need to construct pseudopartial waves and projector
functions. Also, completeness of the partial-wave expansion is not an issue, the
force theorem here seems to be simpler, and orthogonality to the core states is
automatic.

Augmented Basis Functions

As will be described in more detail below, the crystal potential will be written
in the following form:

V (r) = Ṽ0(r) +
∑

ν

{
V1ν(r) − Ṽ2ν(r)

}
(13)

Here Ṽ0 is a smooth potential extending through the unit cell, tabulated on a
real-space mesh; V1ν is the true potential inside the atomic sphere ν, given as
an expansion in spherical harmonics times numerical radial functions, and Ṽ2ν is
the smooth mesh potential expanded in the same way. The tilde over a potential
term indicates that compensating charges modeled by gaussians entered into the
electrostatic contribution. One sees that the potential is expressed as a smooth
function Ṽ0 which is augmented by adding a local term V1ν − Ṽ2ν inside each
sphere. The relevant point is that the local expansions of V1ν and Ṽ2ν can be
truncated at the (same) low angular-momentum cutoff lL with small loss of
accuracy. To obtain a smooth overall potential, V1ν and Ṽ2ν should have the
same values and slopes at the sphere surface. The higher l-components of the
two functions are closely similar and can be left away in the difference V1ν − Ṽ2ν .
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This does not mean that the higher angular momentum components are set to
zero in the total potential; instead, they are carried by the smooth mesh potential
Ṽ0.

After identifying the form in which the potential is specified, the next step
is to calculate the Hamiltonian and overlap matrix elements for the basis fun-
ctions χi(r), obtained by augmenting the (as yet unspecified) smooth envelope
functions Fi(r). The required integrals over the unit cell are

Hij =
∫
χ∗

i (r)[−∆+ V (r)]χj(r) dr (14)

Sij =
∫
χ∗

i (r)χj(r) dr . (15)

At this stage, the envelopes could be the smooth Hankel functions, plane waves,
or some other set of smooth functions extending through the unit cell.

In order to perform the augmentation, the first step is to project out local
information about the envelopes near a chosen site. This can be done using some
local set of radial functions, denoted by PkL, used to expand the i-th envelope
as

Fi(r) =
∑
kL

C
(i)
kLPkL(r) . (16)

The notation anticipates that we will later use the polynomials of Section 2.2,
but in this context the PkL are general functions with well-defined angular mo-
mentum and sufficient radial degrees of freedom.

To augment, we first construct functions P̃kL which are augmented versions
of the separate PkL. Assuming PkL is given in the form

PkL(r) = pkl(r)YL(r̂) (17)

then the augmented version is defined as

P̃kL(r) = p̃kl(r)YL(r̂) =
[
Aklφl(r) +Bklφ̇l(r)

]
YL(r̂) (18)

where p̃kl(r) equals the contents of the square brackets. In the standard way,
φl(r) and φ̇l(r) are a specific solution of the radial Schrödinger equation and its
energy derivative, respectively. The coefficients Akl and Bkl are chosen so that
p̃kl and pkl have the same value and derivative at the muffin-tin radius Rmt. The
augmented envelope function then is

F̃i(r) = Fi(r) +
∑
kL

C
(i)
kL

{
P̃kL(r) − PkL(r)

}
. (19)

At first sight, this expression seems slightly nonsensical. Using (16), the first term
should cancel against the last, leaving only a sum over the P̃kL. The relevant
feature is that, when the sums over k and L are truncated (as will be assumed
from here on), the result is still close to the complete sum. Exactly as in the case
of the potential, we start with a smooth function containing all components up
to infinity and replace only a few of the lower terms by numerical functions.
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Overlap and Kinetic Energy Matrix Elements

The next task is to calculate overlap integrals for the augmented envelope fun-
ctions. These integrals are expressed as follows:

∫
F̃ ∗

i F̃j dr =
∫
F ∗

i Fj dr +
∑
kk′L

C
(i)∗
kL σkk′lC

(j)
k′L (20)

where

σkk′l =
∫

S

{
P̃kLP̃k′L − PkLPk′L

}
dr (21)

is an integral over the atomic sphere. For simplicity in the notation, it was
assumed that there is one atom in the unit cell and that PkL is real. Note that
σkk′l depends only on l, not on L=(l,m). In (20), the integral is evaluated by
first calculating the overlap between the smooth envelopes as an integral over the
whole unit cell. Then local information about the envelopes is projected out in
the form of the coefficient vectors C(i) and C(j). Finally, the product C(i)†σC(j)

is added, where σ is a small symmetric matrix characterizing the atom at this
site.

It should be pointed out that equation (20) is not formally equal to the
integral over F̃ ∗

i F̃j when these functions are given by (19). Instead, the straight-
forward integral over the product would lead to a large number of unwieldy
cross terms. The point is that (20) gives the correct result when all sums are
taken to infinity. For finite cutoffs, the result is a good approximation to that
which would be obtained if no truncation were done. As before, this follows be-
cause the discarded terms in the integrals over P̃kLP̃k′L and PkLPk′L are similar.
Therefore the truncation errors cancel to a large extent when the the difference
between the two contributions to σ is taken. Thus, the question of leaving away
the cross terms in the expression for this and similar matrix elements is purely
a convergence issue: we have an expression which is correct when all terms to
infinity are included, but which must be truncated to a suitable finite sum for a
practical calculation. Consequently it is of high priority to arrange matters for
rapid convergence.

As a second comment, let us assume for a moment that the radial augmen-
tation functions φl and φ̇l are kept frozen throughout the calculation. This is
usually a reasonable procedure in practice, although it was not done in the cal-
culations presented further on. Then the augmented expansion functions P̃kL are
also invariant and consequently the local matrix σkk′l is completely independent
of the environment. The formulation thus begins to approach that of a unique
and transferable pseudopotential.

Analogous to the overlap integral, the kinetic energy integrals are given as
follows: ∫

F̃ ∗
i [−∆]F̃j dr =

∫
F ∗

i [−∆]Fj dr +
∑
kk′L

C
(i)∗
kL τkk′lC

(j)
k′L (22)
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where

τkk′l =
∫

S

{
P̃kL[−∆]P̃k′L − PkL[−∆]Pk′L

}
dr . (23)

Although it is not immediately apparent, the local kinetic energy matrix τkk′l
is also symmetric. When the operator −∆ is moved from the second to the first
function under each integral, two surface terms over the sphere boundary arise.
These cancel because P̃kL and PkL match in value and slope. As in the case of
the overlap, τkk′l is independent of the environment if the radial augmentation
functions φl and φ̇l are kept frozen during the calculation.

Potential Matrix Elements

The potential matrix element is somewhat more complicated. The electrosta-
tic potential inside a given sphere depends not only on the density inside this
sphere, but also on the density in all other parts of the unit cell. This is one
reason why it is not easy to separate out a transferable local potential from
the overall eigenvalue problem, even though this is a fundamental feature of the
pseudopotential approach.

In precise terms, the potential is an auxiliary function needed to minimize
the total energy respective to the trial density. Taken times some density va-
riation and integrated, the potential should give the first-order response of the
electrostatic and exchange-correlation energy for the given variation of the trial
density. As described below, when evaluating the electrostatic energy, compensa-
ting gaussians are added to the smooth mesh density to make a “pseudodensity”
with the correct multipole moments in the spheres. This construction enters into
the total energy and, as a consequence, gives rise to certain terms in the poten-
tial matrix elements. To formulate this properly, write the total crystal density
in a way similar to the potential (13) as

n(r) = n0(r) +
{
ρ1(r) − ρ2(r)

}
(24)

where n0 is a smooth function on the real-space mesh and ρ1, ρ2 are true and
smooth local terms defined only inside an atomic sphere. (For the case of several
atoms per unit cell, the term in braces is replaced by a sum over the spheres.)
If the local sphere density ρ1 − ρ2 has multipole moments qM , the compensated
mesh density is

ñ0(r) = n0(r) +
∑
M

qMGM (r) (25)

where GM is a gaussian of moment unity with angular momentum M , localized
inside the muffin-tin sphere except for a negligible tail.

Similar to the other matrix elements, the potential energy integral can be
written in the form∫

F̃ ∗
i V F̃j dr =

∫
F ∗

i Ṽ0Fj dr +
∑

kk′LL′
C

(i)∗
kL πkk′LL′C

(j)
k′L′ . (26)
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Again, the integral is first evaluated for the smooth mesh functions, after which
the projection coefficients are combined with a small local matrix to add on the
contribution of an atomic site. Here, the local potential matrix πkk′LL′ is dia-
gonal in L only if the sphere potential terms V1 and Ṽ2 are taken as spherical.
To derive an expression for πkk′LL′ we inspect the changes in the electrostatic
and exchange-correlation energies due to a variation of the charge density. Pre-
senting only the results, the final expression involves the multipole moments of
P̃kLP̃k′L′ − PkLPk′L′ :

Qkk′LL′M =
∫

S

{
P̃kLP̃k′L′ − PkLPk′L′

}
rmYM (r̂) dr . (27)

The matrix πkk′LL′ turns out to be the sum of two contributions. The first term
involves the smooth potential Ṽ0 for the compensated mesh density:

πmesh
kk′LL′ =

∑
M

Qkk′LL′M

∫
Ṽ0GM dr . (28)

The second term involves the true and smooth local potentials, V1 and Ṽ2 :

πlocal
kk′LL′ =

∫
S

{
P̃kLV1P̃k′L′ − PkLṼ2Pk′L′

}
dr

−
∑
M

Qkk′LL′M

∫
S

Ṽ2GM dr . (29)

Of course, 28 will cancel to a large extent against the last term in 29 since Ṽ2
should be a local representation of the mesh potential Ṽ0. It is necessary to
include all the terms as described in order to minimize the total energy exactly.

These expressions have moved the situation quite a bit towards the desired
environment-independence of all local atomic terms. In (29), the true potential
V1 is felt by the true partial density P̃kLP̃k′L′ while the smooth potential Ṽ2 is
felt by smooth partial density PkLPk′L′ +

∑
Qkk′LL′MGM . These two partial

densities have the same multipole moments; this was essentially the definition of
the quantity Qkk′LL′M . If we modify the boundary conditions for the electrosta-
tic potential inside the sphere in arbitrary way, this just adds the same linear
combination of the harmonic functions rmYM (r) to both V1 and Ṽ2 (see below).
It follows that the result of (29) does not depend on the electrostatic boundary
conditions on the sphere, which can therefore be set to zero. The result is that
(29) defines a quantity which can be calculated completely and unambiguously
with only the density inside the sphere as input. However, this does not yet make
πlocal

kk′LL′ a fixed quantity when the P̃kL are kept frozen (as was the case for the
overlap and kinetic energy matrix elements). The reason is that the local sphere
density ρ1 −ρ2 can change in the course of a calculation, which will lead to chan-
ges in V1 and Ṽ2. Keeping the local sphere density frozen is thus an additional
approximation, albeit reasonably plausible, which must be assumed in order to
get full independence of πlocal from the environment. While this was not done in
the current method, further investigations in this direction would be interesting.
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Finally, we discuss the significance of the term πmesh
kk′LL′ given by (28). Aug-

mentation modifies the charge density inside a muffin-tin sphere, including the
total sphere charge as well as the higher multipole moments. In this sense our
procedure is much more similar to Vanderbilt’s ultrasmooth pseudopotential
approach [6] than to the usual norm-conserving formulation. In the smooth re-
presentation of the problem, the sphere charge and the higher moments are
mapped onto gaussians of the correct normalization. The term in (28) describes
the interaction of these gaussians with the smooth mesh potential.

Construction of the Output Density

To complete the self-consistency loop, the output density must be constructed:

nout(r) =
∑

n

wn |ψn(r)|2 (30)

where the sum runs over the occupied eigenstates and the wn are occupation
numbers including spin degeneracy. Each wavefunction is a linear combination
of the basis functions in the form

ψn(r) =
∑

i

TinF̃in(r) (31)

and the output density is a sum over the products F̃ ∗
i F̃j :

nout(r) =
∑
ij

{∑
n

wnT
∗
inTjn

}
F̃ ∗

i (r)F̃j(r) . (32)

The output density should be expressed in the same form as the input density
in (24). That is, it should be given by a smooth mesh density nout

0 together with
separate true and smooth local contributions ρout

1ν and ρout
2ν for each sphere ν..

In view of the preceding discussion of the augmentation process, the product of
two augmented basis functions should be calculated as

F̃ ∗
i F̃j = F ∗

i Fj +
∑

kk′LL′
C

(i)∗
kL

{
P̃kLP̃k′L′ − PkLPk′L′

}
C

(j)
k′L′ (33)

where we have again assumed one atom per unit cell for notational simplicity.
The integral over this quantity gave the overlap matrix, and the integral over
this quantity times the potential gave the potential matrix element. In the latter
case, the first term interacted with the smooth mesh potential Ṽ0, the second
with the local true potential V1, and the third with the local smooth potential
V2 in the sphere. Correspondingly, the accumulated sums over the first, second,
and third terms produce nout

0 , ρout
1ν , and ρout

2ν , respectively.

2.4 Representation of the Density and Potential

In the method presented here, some effort was taken to formulate matters such
that low angular-momentum cutoffs can be used. As already mentioned above,
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quantities defined throughout the crystal are represented as a smooth function
which extend through the whole unit cell, plus contributions which are non-
zero inside the muffin-tin spheres. This “additive augmentation” formulation has
advantages over a piecewise definition, which would replace the smooth function
by another quantity inside a sphere. It is the key to good accuracy at low angular-
momentum cutoffs because it permits the smooth interstitial function to supply
the higher angular momentum components.

To represent the valence density, we start with the smooth function n0(r)
tabulated on the real-space mesh. For each atom ν we carry about a “true”
density, which is to be added on, and a “smooth” contribution, which is to be
subtracted and should equal the local expansion of n0(r) except for the angular-
momentum cutoff. The potential is written in a similar way. Collecting together
the corresponding expressions from above, we have

n(r) = n0(r) +
∑

ν

{
ρ1ν(r) − ρ2ν(r)

}
(34)

and

V (r) = Ṽ0(r) +
∑

ν

{
V1ν(r) − Ṽ2ν(r)

}
. (35)

Here ρ1ν includes the core and the nucleus, and ρ2ν includes their smooth
“pseudo” versions, modeled by localized gaussians. Each local contribution ρν =
ρ1ν −ρ2ν is a sum over various angular momentum components, is non-zero only
inside the corresponding MT sphere, and goes to zero smoothly as it approaches
the MT radius Rν

mt. As already emphasised, even if ρν is truncated to a low
angular momentum (possibly only to its spherical part) the full density n(r)
includes contributions for all L up to infinity. At high angular momentum, the
radial part for any smooth function approaches a constant times rl. It is point-
less to include these components explicitly in the local representation, since they
are already contained in n0(r).

A special situation arises if the core states are extended enough to spill out
of the muffin-tin sphere. In such a case, the smooth core density is written as the
sum of a gaussian and a single smooth Hankel function of angular momentum
zero, whereby the latter term describes the spilled-out tail core density. In the
“frozen overlapped core approximation” (FOCA) [16] the smooth crystal core
density is obtained by overlapping these atomic contributions. This means that
a further parameter enters, namely the smoothing radius which defines this core
Hankel function. Whereas a large smoothing radius makes it possible to use a
coarser real-space mesh to represent the overlapped core density, generally the
correct core density outside the sphere can be modeled more accurately using a
smaller value of the smoothing radius.

The potential is made by solving the Poisson equation for the input density
and adding the exchange-correlation potential. This is described next.
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Electrostatic Energy and Potential

At the start of each iteration, the crystal density is available in the form given in
(34) above. To make the electrostatic potential, first a smooth “pseudodensity”
is constructed which equals the given density in the interstitial region and has
the correct multipole moments in all spheres. This is done by adding localized
gaussians gν to the smooth mesh density with the same multipole moments as
the local contributions ρ1ν − ρ2ν within the spheres:

ñ0 = n0 +
∑

ν

gν = n0 +
∑
νM

qνMGνM (36)

The electrostatic potential of the smooth mesh density n0(r) is made by trans-
forming to reciprocal space by fast Fourier transform, dividing the coefficients
by the squares of the reciprocal vectors, and transforming back. The electrosta-
tic potential due to the gaussian terms includes the contribution of the nuclei
and is handled analytically in order to avoid the need for a higher plane wave
cutoff. Together, this produces an electrostatic potential Ṽ es

0 (r) which is valid
throughout the interstitial region and extends smoothly through the spheres.

Next, the electrostatic potential inside the spheres is determined. To recover
the true density from the smooth pseudodensity, the following quantity must be
added at each site ν:

ρ1ν − (ρ2ν + gν) = ρ1ν − ρ̃2ν . (37)

By construction, this local contribution has multipole moments which are zero.
We solve the Poisson equation twice to obtain the “true” local potential V es

1ν and
the “smooth” local potential Ṽ es

2ν :

∆V es
1ν = −8πρ1ν (38)

∆Ṽ es
2ν = −8π(ρ2ν + gν) . (39)

The source terms ρ1ν and ρ̃2ν = ρ2ν +gν have the same multipole moments, and
we are really only interested in the difference V es

1ν − Ṽ es
2ν . Thus, the boundary

conditions when solving the Poisson equation are here irrelevant, as long as the
same set is used in both equations, and can be set to zero.

Finally, the electrostatic energy is obtained by adding together a smooth
mesh term and local terms for all sites:∫

ñ0(r)Ṽ es
0 (r) dr +

∑
ν

{∫
Sν

ρ1νV
es
1ν dr −

∫
Sν

ρ̃2ν Ṽ
es
2ν dr

}
. (40)

As a general note on the energy integrals, expression (40) for the electrostatic
energy involves an important convergence issue similar to the one discussed for
the augmentation procedure. If Equation (34) for the density is taken seriously,
it should be possible to add together ρ1ν and −ρ2ν for each site from the very
beginning. However, in our approach the program explicitly carries about both
functions in separate arrays, making it possible to evaluate the electrostatic
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energy as described. In fact, the sum in (40) is not strictly the exact electrostatic
energy for the density in (34) for any finite angular-momentum cutoff; again, a
straightforward evaluation would lead to a large number of problematic cross
terms.

In the description used here, there is a “true” and a “smooth” part to the
problem which are kept separate. When evaluating energy integrals like the one
above, the true density is not allowed to interact with the smooth potential and
vice versa. The choice between the two possible expressions for an energy integral
is only relevant for the rate of convergence with the angular-momentum cutoff,
and not for the final outcome at convergence. When all angular-momentum
components up to infinity are included, the distinction between the different
ways to calculate the integral disappears. In the end, the main consequences of
the formulation as in (40) are:

• In the resulting energy integrals, the higher angular momenta are supplied
by the smooth density n0(r). That is, we start with an expression which
contains all angular momentum components up to infinity in each sphere,
then replace a few of the lower momentum terms.

• The aforementioned unwieldy cross terms do not have to be evaluated.
• The augmentation procedure described above cleanly separates into a smooth

part plus local contributions, whereby each local term is independent of the
environment of the atom.

Exchange-Correlation Energy and Potential

In the same spirit, the exchange-correlation energy is calculated by integrating
a smooth function over the whole unit cell, then replacing the smooth contribu-
tion by the true one inside each MT sphere. Things are simpler here than for
the electrostatic energy because no additional terms are needed to correct the
multipole moments. Thus, the smooth exchange-correlation potential is made
by evaluating it point-by-point for the smooth mesh density n0(r). Adding this
to the electrostatic potential for the compensated density gives the total mesh
potential

Ṽ0(r) = Ṽ es
0 (r) + µxc(n0(r)) (41)

Inside each sphere, two different exchange-correlation potentials are made
and added respectively to the true and smooth local electrostatic potentials:

V1ν(r) = V es
1ν (r) + µxc(ρ1ν(r)) (42)

Ṽ2ν(r) = Ṽ es
2ν (r) + µxc(ρ2ν(r)) (43)

to produce the final potentials seen by the true and smooth densities at this site.
The exchange-correlation energy is made by constructing the energy density εxc
in exactly the same way and then adding together the smooth mesh term∫

n0εxc(n0) dr (44)
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and the sum over the local contributions∫
Sν

ρ1νεxc(ρ1ν) dr −
∫

Sν

ρ2νεxc(ρ2ν) dr . (45)

Since εxc(ρ) is a nonlinear function of the density, it mixes together all angular
momentum components up to infinity. That is, εxc(ρL + ρK) is not the same as
εxc(ρL) + εxc(ρK) and we should really include all L terms, even when making
something as fundamental as the spherical part of εxc(ρ). By evaluating the
exchange-correlation energy as described, the interaction with the higher angular
momenta is taken over by the smooth mesh contribution. When ρ1ν and ρ2ν are
truncated to the same low angular momentum, the errors in the two integrands
ρ1νεxc(ρ1ν) and ρ2νεxc(ρ2ν) are similar. Thus, while the two integrals in (45)
converge rather sedately with the L cutoff separately, their difference converges
rapidly.

Force Theorem

The force on an atom is defined as the negative gradient of the total energy
respective to the corresponding atomic coordinates:

F µ = −∇µESC(R1, . . . ,Rµ, . . . ,RN ) . (46)

Here ESC is the full self-consistent total energy, which depends only on the
atomic positions. In terms of small differences, the system is made self-consistent
at two slightly different geometries and the total energies are compared. A force
theorem is a closed expression, making it possible to calculate the forces F µ

without explicitly shifting the atoms. Since the self-consistency process mixes
together the various energy terms, a straightforward differentiation of the total
energy expression is a strenuous (and not always feasible) way to obtain such a
theorem.

A more convenient way to derive a force theorem is as follows [11]. Assume we
want to calculate the forces at the geometry P (0) = (R(0)

1 , . . . ,R
(0)
N ), for which

the self-consistent density is known. For this purpose we make an arbitrary guess
for the way in which the density responds as the atoms are moved. That is, we
define a density ñP (r) for each geometry P = (R1, . . . ,RN ) which conserves the
total charge and which approaches the correct self-consistent density smoothly
as P → P (0). From the variational properties of the energy functional it follows
that

∇µESC(R1, . . . ,RN ) = ∇µẼ(R1, . . . ,RN ) (47)

where Ẽ is defined as the Harris energy [17] evaluated for the guessed density:

Ẽ(R1, . . . ,RN ) = EH[ñP (r)] . (48)

It follows that the forces can also be obtained by differentiating the auxiliary
function Ẽ. This is a considerably easier task than differentiation of the self-
consistent energy because the Harris energy can be written down explicitly as
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function of the density. Furthermore, since the guessed function ñP (r) can be
chosen freely, different force theorems can be obtained depending on this choice.
Sensibly, ñP (r) should be defined in a way which makes it easy to perform the
differentiation of Ẽ.

In the present formalism, the charge density is defined by a smooth mesh
density n0(r) together with true and smooth local terms ρ1ν(r) and ρ2ν(r)
associated with each site ν. If these functions represent the self-consistent density
at geometry P (0), a natural choice for the guessed density ñP (r) at a different
geometry P is that ρ1ν and ρ2ν are carried along rigidly with the moving atoms
while n0 is unchanged.

This choice leads to a simple force theorem, as will be shown next. When the
core states are treated separately, the Harris energy takes this form:

EH =
∑

εvaln −
∫
nvalVeff + U + Exc + T̃core (49)

where T̃core equals
∑
εcorei −

∫
ncoreVeff and all eigenvalues are calculated in

the effective potential Veff , made from the input density nval + ncore. Integrals
(including the implicit ones in U and Exc) are all assembled in a similar way out
of contributions from the smooth mesh density and from the spheres.

The aim is to derive the first-order change δEH for the density change defined
above. It reasonably straightforward that the last two terms give no contribution.
Furthermore, all integrals over the spheres do not contribute. This is because the
total-energy terms and the augmentation matrices for each atomic sphere are in-
dependent of the environment, depending only on the (here invariant) densities
ρ1ν and ρ2ν . On the other hand, a number of terms arise because the electrosta-
tic potential on the mesh changes by some amount δṼ0 as the compensating
gaussians gν move along with the atoms. Each compensating gaussian gν can be
split into a valence part gvalν and a smooth representation of the core and nucleus
gcnν . The compensated mesh density then equals

ñ0 = n0 +
∑

ν

gν =
[
n0 +

∑
ν

gvalν

]
+

∑
ν

gcnν (50)

where the term in brackets is the smooth representation of the valence density.
The contributions to δEH from the first three terms of (49) are obtained as

follows:

• By first-order perturbation theory, each eigenvalue εvaln changes by

δεvaln =< Cn|δH − εvaln δS|Cn > (51)

where H and S are the Hamiltonian and overlap matrices and Cn is the
column eigenvector. By summing over the occupied states and inspecting
how Ṽ0 enters into the Hamiltonian, the outcome is

δ
∑

εvaln =
∫
δṼ0

[
n0 +

∑
ν

gvalν

]
+ δR

∑
εvaln . (52)
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Here δR refers to the eigenvalue change when the potential Ṽ0 and the aug-
mentation matrices entering into H and S are kept frozen.

• The change in the second term is

−δ
∫
nvalVeff = −

∫ [
n0 +

∑
ν

gvalν

]
δṼ0 −

∫
Ṽ0 δg

val
ν . (53)

• The change in the third term is

δU =
∫
Ṽ0

[
δgvalν + δgcnν

]
. (54)

By summing these three contributions, the final force theorem is obtained:

δEH =
∫
Ṽ0 δg

cn
ν + δR

∑
εvaln . (55)

Here the first term describes the force of the smooth density on the gaussian
lumps which represent the core and the nucleus at each site. The second term
is a generalized Pulay [18] term. It describes the eigenvalue shifts for a chan-
ging geometry but invariant smooth mesh potential and augmentation matrices.
However, these augmentation matrices are used at the shifted atomic positions.
This term can be evaluated in a straightforward manner since it mainly involves
the gradients of the various quantities (such as the expansion coefficients of the
envelope functions) which are needed to assemble the Hamiltonian and overlap
matrices.

3 Tests of the Method

We have performed a number of tests to check the validity of the method. This
we do in two ways. First, we investigate the sensitivity of the total energy to
the various parameters at our disposal, i.e. the charge density and augmentation
l-cutoffs lρ and la, the augmentation polynomial cutoff ka, the smoothed density
spacing, the treatment of the core, and the smoothing radii for the charge density,
augmentation, and core, which we label respectively Rρ

sm, Ra
sm, and Rc

sm. Second,
we compare our results to other local-density calculations for several materials
systems. Lastly, we present rules of thumb for the choice of basis.

3.1 Dependence on l− and k-Cutoffs

Because the augmentation here shares a lot in common with a pseudopotential
formulation, we expect that the l-cutoffs in the augmentation la and explicit
representation of the charge density lρ to converge as efficiently. Indeed we find
(see Fig. 3) that for la=2 the total energy is converged to ∼10−3 Ry/atom, and
to ∼10−4 Ry/atom for la=3, even for the transition metal Ti. For a fixed la,
a somewhat faster convergence in lρ was found: even lρ=0 was quite adequate
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Table 1. Parameters for baseline reference in the tests for GaN, Ti, and Se. Rmt,
Rc

sm and Rρ
sm are in units of the average Wigner-Seitz radius. As fractions of touching

sphere radii, the Rmt are 0.99, 0.97, and 0.96, respectively

Rmt Rc
sm Rρ

sm ka la lρ mesh basis

GaN 0.69 0.22 0.17 4 4 4 20 spd × 3

(small basis) spd × 2

Ti 0.88 0.28 0.19 4 4 4 24 spd × 2+p

(small basis) spd × 2

(minimal basis) spd

Se 0.60 0.20 0.15 4 4 4 24 spd × 2+sp

0 1 2 3 4

10-5

10-4

10-3

2 3 4

10-5

10-4

10-3

Fig. 3. Errors in the total energy, in Ry/atom, as a function of the l-cutoffs lρ for fixed
la=5 (top panel) and la, with lρ=la (bottom panel). Solid line: GaN, dashed line: Ti;
dotted line: Se.
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for GaN and Ti, but this may be an artifact of the relatively high symmetry of
those lattices.

The polynomial cutoff ka in the Pkl expansion is another parameter whose
convergence was checked. Because the tails have a rather weak energy depen-
dence, we would expect that already after two terms (ka=1) the total energy
should be reasonable. Fig. 4 shows that the energy is converged to ∼10−3Ry/atom
for ka=1 (though the Ti calculation produced nonsensical results in that case),
and ∼10−4Ry/atom for ka=2. It is evident that the convergence of ka will be
sensitive to the augmentation smoothing Ra

sm, i.e. the smoothing radius for which
one projects tails of the envelope functions into polynomials inside the augmen-
tation site. The larger one makes Ra

sm, the more broadly dispersed the errors
in the polynomial expansion; the optimal choice of Ra

sm distributes the errors
most evenly throughout the augmentation sphere. From experience we have fo-
und that Ra

sm ∼ Rmt/3 is approximately the smoothing for which the most rapid
convergence with ka is attained.

1 2 3 4 5 6

10-5

10-4

10-3

Fig. 4. Errors in the total energy, in Ry/atom, as a function of the k-cutoff. Solid line:
GaN, dashed line: Ti; dotted line: Se.

3.2 Dependence on MT and Smoothing Radii

One critical test of the theory’s validity is its dependence of the total energy on
muffin-tin radius Rmt, because by changing Rmt one changes the representation
of the basis. If the basis is complete, and all the cutoffs (la, lρ, ka and mesh
spacing) and smoothing radii (Rc

sm, Rρ
sm) are set fine enough, there should be no

dependence on Rmt. Indeed, we find this to be essentially true for the cases we
studied (ZB GaN, Se, and Ti). Parameters for which the sensitivity was checked
in the greatest detail were the core smoothing radius Rc

sm, and truncation of the
basis. Using the reference parameters in Table 1, the total energy was found to
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be constant for all three tests to within ∼1 mRy/atom when the MT radius was
varied from ∼0.85×RT , to ∼1.1×RT , where RT is the touching-sphere radius.
Fig. 5 illustrates the dependence for GaN and Ti, for both the baseline case and
when one parameter was changed relative to it.

That the energy is independent of Rmt for Rmt < RT is a demonstration
that the errors can be well controlled, and the energy converged to a high pre-
cision as with the LAPW technique. That the energy is is independent of Rmt
for Rmt > RT is less obvious, since spheres overlap and wave functions have
different, and inconsistent representations. Previous implementations of full-
potential, augmented-wave programs do not show this independence, and we
attribute this to the fact that both the augmentation and the local contributi-
ons to the potential go smoothly and differentiably to zero at the MT boundary;
thus the overlapping regions are “doubly counted” with a very small weight.

Fig. 5 shows that the energy is rather sensitive to the core smoothing radius.
This is not surprising, since the core energy is very large and small changes in
the core density can produce significant effects. But, energy differences between
different structures should be significantly smaller than this. Also, as expected,
there is a much stronger dependence on the total energy when the basis is made
small. (This error can be reduced by re-optimizing the wave function parameters
for each new choice of MT radius. No attempt was made to do this.) As one
shrinks Rmt, the interstitial volume increases and throws greater weight into
the interstitial representation. The figure also shows that Rρ

sm must be small
enough to really properly confine the projection of the MT potential into the
augmentation sphere, or about 0.25×Rmt. Rc

sm can be set set to about 0.4×Rmt,
negligible loss in accuracy, and up to about 0.6×Rmt, with a loss in absolute
accuracy of ∼1 mRy/atom, provided Rmt is kept close to touching. This is quite
adequate for most applications, since such error will cancel when comparing
relative energy differences. Some information about the MT dependence in Se is
discussed in the comparison to other LDA results.

3.3 Dependence of the Total Energy on Basis

Having the extra degrees of freedom in the basis is one key advantage the present
scheme has over conventional LMTO approaches. The two degrees of freedom,
the energy ε and smoothing radius Rsm can be adjusted for each orbital. As we
show here, a minimal basis of spd orbitals produces ground state energies within
a few mRy of the completely converged LDA energy in close-packed systems;
similar convergence can be achieved with an spdsp basis in open structures.

As of yet, there is no automatic prescription for finding the optimum choice
of these parameters suitable to the solid, and we offer some general rules of
thumb based on practical experience. One obvious choice is to determine Rsm
and ε from the free-atomic wave functions. This turns to be a reasonable choice,
particularly for the compact orbitals such as transition metal d orbitals or deep
states such as the Ga d semicore levels.
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Fig. 5. Dependence of the total energy, in Ry/atom on muffin-tin radius. Reference
parameters are provided in Table 1. Top: Ti; bottom: ZB GaN. Arrows mark MT radius
for touching spheres. The large Rc

sm (short dashed line) correspond to Rc
sm∼0.6×RT ;

the reference Rc
sm (solid lines) correspond to ∼0.32×RT . The large Rρ

sm (long dashed
line) correspond to Rρ

sm∼0.3×RT ; the reference Rρ
sm correspond to Rρ

sm ∼0.25×RT .
Calculations repeated using the perturbation approach to the core-valence interaction
are indistinguishable from the ones shown.
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Fig. 6. Contours of the deviation of the total energy from the optimum value, in
mRy/cell, as functions of Rsm for Al and N. All the orbitals on each atom were given
the same Rsm. There are four minima, at (Rsm(Al),Rsm(N))≈ (0.95,1), (0.85,3), (1.9,1),
and (1.6,3). All the minima are within 4 mRy of each other.

Interestingly, the extended sp orbitals usually have two very different opti-
mum values of Rsm. This is illustrated for AlN in Fig. 6. Some rules of thumb,
gathered from experience for a number of cases, are:

• For localized, narrow-band orbitals, the values of Rsm and ε fit to the free
atom are close to optimum.

• Reasonable choices of ε are −1 < ε < 0. For wide-band orbitals, the best
choice of ε is near zero.

• For sp orbitals, the “small” optimum Rsm is usually ≈2/3 Rmt. The “large”
optimum Rsm is ≈1.5 Rmt and mostly resembles a gaussian orbital in the
near Rmt.

• For close-packed structures, a minimal basis consisting of the nine spd orbi-
tals (16 for rare earths) is sufficient to produce a total energy with ∼5mRy/atom
or so of the totally converged LDA result. The error is slightly larger for hea-
vier elements, unless f orbitals are included.

• For open structures, a basis consisting of thirteen spdsp orbitals usually
produces a result with a similar accuracy. In that case, choosing one set of
sp orbitals with a “small” Rsm, and the the other with a large Rsm seems
to work well. There is an occasional exception to this rule; for example, the
deep Ga d states in GaN require two sets of d orbitals to reach this accuracy.
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• The fastest convergence in ka was achieved for Ra
sm, is ∼1/3×Rmt; using

that value, ka=2 or 3 was adequate for all systems we studied.

3.4 Comparison with Other Density-Functional Calculations

First, we investigate the cases of elemental Se and Te. These form an open,
low-symmetry crystal with approximately 90-degree bond angles. The electronic
structure is approximately described by pure atomic p orbitals linked together in
one-dimensional chains, with a strong σ bond connecting neighbors in the chain
and with a weak interaction between the chains. The weak inter-chain interaction
combined σ-like character of the bond make the stiffness of the crystal weak with
respect to angular distortions, and thus pose a rather stringent test for the local-
density approximation, and the low symmetry and open structure make a a good
test for an atom-centered method’s method’s ability to reproduce the converged
local-density result. The crystal structure of Se and Te is hexagonal with three
atoms per unit cell, and may be specified by the a and c parameters of the
hexagonal cell, and one internal displacement parameter u. Using a plane-wave
pseudopotential approach, Dal Corso and Resta[19] have calculated the bonding
in some detail, and they have also calculated the equilibrium structure of Se for
both the LDA and adding gradient corrections.

Table 2 shows our LDA structures agrees well with that of Corso and Resta.
For both calculations, the LDA predicts reasonably well the strong intra-chain
bond length, but rather poorly the inter-chain bond length. The table also shows
the dependence of the structural parameters and total energy on the size of
basis and the MT radius. The reference basis consisted of one spd group with
Rsm=1.3, ε=-0.1 Ry and an additional sp group with Rsm=1.4, ε=-1 Ry, for 13
orbitals. Adding a second d and a third s orbital lowers the energy by 2/3 mRy
per atom; adding an f orbital lowers the energy by an additional 2.5 mRy per
atom. Thus, the 13-orbitals basis comes to within ∼ 3 mRy/atom of a totally
converged energy. Also, the table illustrates the dependence on RMT : the lattice
parameters vary weakly and the total energy varies by ∼1 mRy/atom when
RMT is changed from -10 to 10 percent of touching for the minimal basis; the
dependence is slightly weaker with a large basis.

Next, we examine in some detail the behavior of the (Al,Ga,In)N compounds,
because it involves several useful tests of the method’s validity. The deep Ga
and In d levels must be included in the valence for a well-converged calculation.
(Pseudopotential results that pseudize the d electrons differ considerably from
those that do not.) Even though the states are deep, it turns out that they must
treated carefully. For example, to produce accurate heats of mixing of the GaInN
alloy it was found that two sets of Ga and In d orbitals were required.

Our next case concerns the [111] γ-surface of Ni. The [111] glide planes are
connected with dislocation motion, and therefore are of significant practical inte-
rest. To model the γ surface with the periodic boundary conditions necessitated
by the present computational approach, we employ a supercell of 8 [111] planes
of Ni atoms, with the fault between the fourth and fifth planes. The first and 8th
layers were separated by a vacuum of two layers. Lattice vectors in the plane of
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Table 2. Crystal structure properties of Se. Lattice parameters a and c are in atomic
units, as are intrachain bond length d1 and interchain bond length d2; u is an internal
displacement parameter as described in Ref. [19] and E is the binding energy relative
to the free atom, in Ry

a c u d1 d2 E

a, Rmt=2.11 7.45 9.64 0.258 4.63 5.83 -0.7121
a, Rmt=2.32 7.40 9.57 0.266 4.67 5.75 -0.7147
a, Rmt=2.45 7.40 9.57 0.267 4.68 5.73 -0.7152
a, Rmt=2.58 7.40 9.59 0.268 4.69 5.72 -0.7149
b, Rmt=2.11 7.40 9.58 0.259 4.61 5.78 -0.7152
b, Rmt=2.32 7.41 9.61 0.264 4.66 5.76 -0.7167
c, Rmt=2.32 7.42 9.57 0.264 4.67 5.77 -0.7261
d, Rmt=2.32 7.38 9.60 0.270 4.71 5.70 -0.7131
e, Rmt=2.32 7.40 9.59 0.267 4.72 5.72 -0.7131

Ref. [19] 7.45 9.68 0.256 4.61 5.84

Experiment 8.23 9.37 0.228 4.51 6.45

a 13 orbital basis
b 21 orbital basis
c 21+f orbital basis
d lρ=0
e la=2 lρ=2

the fault were [11̄0] and [112̄], so that each layer had two atoms. The total energy
was calculated as a function of the translation τ along [112̄]. It was assumed that
the four layers separating the fault and the vacuum was large enough that there
was no coupling between the fault and the surface. The thickness of the vacuum
itself was checked and the energy shown in Fig. 7 change was negligible when the
vacuum thickness was doubled. la and lρ were taken to be 3, Rc

sm to be 0.4×Rmt.
Fig. 7 shows the energy of the Ni γ surface, without allowing any atomic

relaxation. It was calculated using a 9-orbital minimal basis of spd orbitals of
energy -0.1 Ry and smoothing radius Rsm 2.0 a.u. and 1.0 a.u. for sp and d
orbitals, respectively (dark circles), and then repeated for a basis enlarged by
an spd set of energy -1 Ry, Rsm=1.3 a.u. (light circles). As the Figure shows,
the addition of the larger basis made a 5% correction to the barrier. The BZ
was integrated by sampling, using 27 irreducible points. A conservative mesh of
15×24×120 divisions was used, corresponding to a mesh spacing of ∼0.31 a.u.;
the inset in Fig. 7 shows the error in the barrier as a function of the mesh spacing.
It is seen that an acceptable error was obtained for a mesh spacing of ∼0.5 a.u..
This corresponds to an error in the numerical integration of kinetic energy of
∼ 10−6 Ry.
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Table 3. Lattice properties of III-nitrides. Lattice constant a is in Å. All data are
for the wurtzite structure, except for rows marked a (ZB). Data marked OLD-FP are
calculations from the present work, using the LDA and the exchange-correlation func-
tional of Barth and Hedin [34]. Data marked GGA-LMTO employ gradient-corrected
functional of Perdew [35]. Data marked PWPP are LDA results using a plane-wave
basis and a pseudopotential with the Ga 3d and In 4d in the valence [33]. ∆EZB−WZ

is the ZB-WZ energy difference per atom pair, in meV

AlN GaN InN

Small basis a 3.096 3.163 3.525
c/a 1.600 1.629 1.606
u 0.3818 0.3775 0.3805

a (ZB) 4.353 4.481 4.961
∆EZB−WZ 54 14 23

Large basis a 3.095 3.160 3.509
c/a 1.601 1.629 1.613
u 0.3818 0.3766 0.3794

a (ZB) 4.478 4.947
∆EZB−WZ 51 12 18

Old-FPLMTO a 3.091 3.160 3.528
c/a 1.602 1.626 1.611
u 0.381 0.377 0.380

a (ZB) 4.345 4.464 4.957

LAPWh a 3.098 3.170 3.546
c/a 1.601 1.625 1.612
u 0.382 0.377 0.379

a (ZB) 4.355 4.476 4.964
∆EZB−WZ 45 11 21

PWPPf a 3.084 3.162 3.501
c/a 1.604 1.626 1.619
u 0.381 0.377 0.378

a (ZB) 4.342 4.460 4.932
∆EZB−WZ 36 22 20

Experiment a 3.11d 3.190d 3.544e

c/a 1.601d 1.626d 1.613e

u 0.382d 0.377d

a (ZB) 4.38 a 4.52-4.55b 4.98c

a Ref. [24]
b Refs. [25–29], taken from Ref. [23]
c Ref. [22]
d Ref. [30]
e Ref. [21]
f Structural properties taken from Ref. [33]; ∆EZB−WZ taken from Ref. [20].
g Taken from Ref. [31]
h Taken from Ref. [32]
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Fig. 7. The total energy for a γ surface of [111] Ni, as as function of translation
τ/4[112̄], as described in the text. Upper panel: total energy (mRy/unit cell) for a nine-
orbital basis (dark circles), an 18-orbital basis (light circles) and for a pseudopotential
calculation (dotted line), using VASP. Inset: circles show error in the peak energy
(mRy) as a function of mesh spacing in a.u.. Crosses show corresponding error in
numerical integration of the kinetic energy of the d orbital on the mesh. Lower panel:
x (circles) and y (squares) force on the atoms at the interface. Dotted lines show VASP
result.

These results were compared to a pseudopotential calculation using Van-
derbilt’s [6] ultrasoft potentials; this latter calculation was performed with the
VASP code [36]. The VASP code used the same BZ integration, and the default
mesh (16×24×108 divisions). Those results are illustrated by the dotted lines
in Fig. 7. There is good agreement with VASP throughout except for a modest
discrepancy for τ ∼ 1. The source of the discrepancy is not clear; it would seem
that in the all-electron case, the remaining sources of error (truncation in basis,
truncation in l, smoothing of the core) all appear to be controlled.
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4 Summary

In this paper, we have presented a newly developed full-potential LMTO method
with the following properties:

• The potential is treated without any shape approximation, based on a muffin-
tin type of geometry consisting of non-overlapping atomic spheres and an
interstitial region.

• Empty spheres are not needed for any system.
• The results can be systematically improved by increasing the convergence

parameters.
• The forces are as accurate derivatives of the total energy.

Similar to some previous FP-LMTO approaches, the interstitial density and
potential are represented on a real-space mesh while the wavefunctions are as-
sembled from atom-centered basis functions with well-defined angular momenta.
In order to reduce the basis size further and to make the evaluation of integrals
more efficient, we have introduced a new type of function which plays the role of
the smooth envelope. These “smooth Hankel functions” are analytic in all parts
of space and equal the standard Hankel functions at large radii. Closer to the
origin, they bend over smoothly and are nonsingular. To introduce atomic detail
into these envelope functions, a modified augmentation scheme was employed
which combines some features of the projector-augmented wave method and the
pseudopotential approach. By systematically using additive augmentation for
the density, the potential, and the wavefunctions, the approach allows low an-
gular momentum cutoffs throughout. Tests were performed to assess the quality
of the method. Results have shown that state-of-the-art convergence can indeed
be attained with low angular momentum cutoffs and small basis sets. Since the
forces are calculated and the potential is treated without any shape approxi-
mation, the method presented here can be used to relax atomic structures and
to study the energy changes associated with perturbations of the atoms around
their equilibrium sites.
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5. P.E. Blöchl, Phys. Rev. B 50, 17 953 (1994).
6. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
7. K.H. Weyrich, Phys. Rev. B 37, 10269 (1988).
8. J. Wills, unpublished.
9. S.Y. Savrasov, Phys. Rev. B 54, 16470 (1996).



A Full-Potential LMTO Method 147

10. M. Methfessel, Phys. Rev. B 38, 1537 (1988); M. Methfessel, C.O. Rodriguez, and
O.K. Andersen, Phys. Rev. B 40, 2009 (1989).

11. M. Methfessel and M. van Schilfgaarde, Phys. Rev. B 48, 4937 (1993).
12. M. Springborg and O.K. Andersen, J. Chem. Phys. 87, 7125 (1987).
13. M. Methfessel, PhD thesis, Katholieke Universiteit Nijmegen (1986).
14. E. Bott, Diplomarbeit, Technical University Darmstadt (1997); E. Bott, M. Meth-

fessel, W. Krabs, and P.C. Schmidt, J. Math. Phys. 39, 3393 (1998).
15. G.B. Bachelet, D.R. Haman, and M. Schlüter, Phys. Rev. B 26, 4199 (1982).
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Abstract. The essential features of a full potential electronic structure method using
Linear Muffin-Tin Orbitals (LMTOs) are presented. The electron density and potential
in the this method are represented with no inherent geometrical approximation. This
method allows the calculation of total energies and forces with arbitrary accuracy while
sacrificing much of the efficiency and physical content of approximate methods such as
the LMTO-ASA method.

1 Introduction

This paper describes a particular implementation of a full-potential electronic
structure method using Linear Muffin-Tin Orbitals (LMTO’s) [2,10] as basis
functions. There have been several “FP-LMTO” implementations [3–7]. The one
described here has not been published in detail, although calculations performed
with this method have been reported for quite some time [3]. There are many
aspects to an electronic structure method. This paper is focussed on those aspects
which enable a full potential treatment. Relatively small details pertaining to
full-potential methods will be discussed while larger details having to do with,
for example, relativity will not be.

The emphasis of a variational full-potential method is somewhat different
from that of a method such as the LMTO-ASA method. The emphasis of the
former is on the completeness of the basis while in the latter it is in the phy-
sical content (and interpretability) of the basis. These concepts are, of course,
intimately related, but the emphasis is different.

The exposition here is for an infinite system periodic in three dimensions.
This method has been implemented for two-dimensional systems,[8] but that
will not be discussed here.

Notation

Papers on electronic structure methods unavoidably carry a high overhead in
functional symbols and indices. It is simplest to define here, without motivation,
the special symbols and functions that will be used in this paper, for future
reference. These special functions (although not necessarily the symbols used
here) have been used extensively in LMTO documentation and are largely due
to Andersen.[10]
H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 148−167, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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Spherical harmonics:

Y�m(r̂) ≡ i�Y�m(r̂) (1)

C�m(r̂) ≡
√

4π
2�+1

Y�m(r̂) (2)

C�m(r̂) ≡ i�C�m(r̂) (3)

where Y is a spherical harmonic.[9]

Bessel functions:

K�(κ, r) ≡ −κ�+1

{
n�(κr) − ij�(κr) κ2 < 0
n�(κr) κ2 > 0

(4)

KL(κ, r) ≡ K�(κ, r)YL(r̂) (5)
J�(κ, r) ≡ j�(κr)/κ� (6)
JL(κ, r) ≡ J�(κ, r)YL(r̂) (7)

where L denotes �m and n� and j� are spherical Neumann and Bessel functions,
respectively.

Geometry: For computational purposes, the crystal is divided into non-overlap-
ping spheres surrounding atomic sites (muffin-tin spheres) where the charge den-
sity and potential vary rapidly and the interstitial region between the spheres,
where the charge density and potential vary slowly. This is the muffin-tin geome-
try used as an idealized potential and charge density in early electronic structure
methods (KKR and APW). Here, the division is a computational one, and does
not restrict the final shape of the charge density or potential. In the muffin-
tin spheres, the basis functions, electron density, and potential are expanded in
spherical waves; in the interstitial region, the basis functions, electron density,
and potential are expanded in Fourier series.

There are many relevant considerations in choosing muffin-tin radii. Assu-
ming all expansions are taken to convergence, the density and potential depend
on the muffin-tin radii only through the dependence of basis functions on the
radii. As discussed below, basis functions have a different functional form inside
the muffin-tin spheres, and the choice of muffin-tin radius affects this crossover.
Hence, assuming the Hamiltonian is the same inside and outside the spheres (the
treatment of relativity may affect this as discussed below), the muffin-tin radii
are variational parameters and the optimum choice minimizes the total energy.
If the basis is large enough however (suitably complete within and without the
spheres), the energy is insensitive to the choice of radii. A reasonable choice
results from choosing radii that are within both the minimum in charge density
and the maximum in potential along a line between nearest neighbors. Relati-
vistic effects are usually taken into account only in the muffin-tin spheres, in
which case the Hamiltonian depends on the radii; hence when relativistic effects
are important, the radii are not variational parameters.
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In what follows, lattice positions are vectors R = Rn, integer multiples of
a basis R. Atomic positions in the unit cell are denoted by τ . A set of atomic
positions invariant under the point group of the lattice are said to be of the same
symmetry type, t. Similarly, in the reciprocal lattice, vectors are g = Gn for the
reciprocal basis G = 2πR−T . Brillouin zone (or reciprocal unit cell) vectors are
denoted by k.

Symmetric functions: Within the muffin-tin region, functions invariant are
expressed in harmonic series. If f(r) is such a function, at site τ

f(r)
∣∣∣
rτ <sτ

=
∑

h

fht(rτ )Dht(Dτ r̂τ ) (8a)

Dht(r̂) =
∑
m

αht(m)C�hm(r̂) (8b)

In Equation (8a), Dτ is a transformation to a coordinate system local to site τ ;
the local coordinates of sites of the same type are related by an element of the
crystal point group that takes one site into another. Expressed in this way, the
functional form of Dht (Equation (8b)) depends only on symmetry type.

In the interstitial region, symmetric functions are expressed in Fourier se-
ries:

f(r)
∣∣∣
r∈I

=
∑
S

f(S)DS(r) (9a)

DS(r) =
∑
g∈S

eig·r (9b)

The sum in Equation (9a) is over symmetry stars S of the reciprocal lattice.

2 Basis Set

2.1 Interstitial

In the interstitial region (symbolically I) between the muffin-tin spheres, bases
are Bloch sums of spherical Hankel or Neumann functions:

ψi(k, r)
∣∣∣
r∈I

=
∑
R

eik·RK�i(κi, |r−τ i−R|)Y�imi

(
Dτi(r−τ i−R)

)
(10)

The rotation Dτ in (10) takes the argument into a coordinate system local to
each site τ . The purpose of this will be made evident later. The function on the
right hand side of Equation (10) is sometimes called the envelope function.

Notice the parameters, specifying a basis function, inherent in this definition.
They are the site τ in the unit cell on which the spherical wave is based, the
angular momentum parameters � and m of the spherical wave with respect to its
parent cell, and the kinetic energy κ2 of the basis in the interstitial region. The
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angular momentum parameters specifying the basis set are chosen to represent
the atomic states from which crystal eigenstates are derived. In the LMTO-
ASA, it is usual to include � bases one higher than the highest relevant band.
In the method described here, this is rarely necessary, possibly because of the
multiplicity of bases with the same angular momentum parameters. It is usual
to use “multiple κ” basis sets, having all parameters except the tail parameter
the same.

There appears to be no simple algorithm for choosing a good set of interstitial
kinetic energy parameters. Schemes such as bracketing the relevant energy spec-
trum have been proposed.[7] The optimum set would minimize the total energy.
This can be done but is time consuming even for relatively simple systems. It
seems, however that parameter sets obtained in this way for simple systems in
representative configurations can give good results when used for related sy-
stems over a broad pressure range. Thus good sets are arrived at through some
experimentation. The choice can be important as it’s possible to pick a set of
parameters that will give very bad results, and the parameter set used in any
new calculation should be always checked for stability.

2.2 Muffin Tins

In the muffin-tin spheres, bases are linear combinations of spherical waves mat-
ching continuously and differentiably to the envelope function at the muffin-tin
sphere. The envelope function K may be expanded in a series of spherical Bes-
sel functions about any site except it’s center. A basis function on a muffin-tin
sphere in the unit cell at R = 0 is therefore

ψi(k, r)
∣∣∣
rτ=sτ

=
∑
R

eik·R ∑
L

YL(Dτ r̂τ )
(

K�(κi, sτ )δ(R, 0)δ(τ, τi)δ(L,Li)

+ JL(κ, sτ )BL,Li
(κi, τ−τ ′−R)

)
=

∑
L

YL(Dτ r̂τ )
(

K�(κi, sτ )δ(τ, τi)δ(L,Li)

+ JL(κ, sτ )BL,Li(κi, τ−τ ′,k)
)

(11)

where rτ ≡ r − τ and B is equivalent to the KKR structure constant. [10] The
unitary transformation applied to B rotates components into site-local coordi-
nates from the left and right.

Equation (50) is compactly expressed by defining a two-component row vector
K so that

K�(κ, r) = (K�(κ, r),J�(κ, r)) (12)

and a two component column vector S so that

SL,L′(κ, τ−τ ′,k) =
(

δ(τ, τ ′)δ(L,L′)
BL,L′(κ, τ−τ ′,k)

)
. (13)
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Then the value of a basis function on a muffin-tin boundary is expressed simply
as

ψi(k, r)
∣∣∣
rτ=sτ

=
∑
L

YL(Dτ r̂τ )K�(κi, sτ )SL,Li
(κi, τ−τ ′,k) (14)

The radial part a basis function inside a muffin-tin sphere is a linear combi-
nation of atomic like functions φ and their energy derivatives φ̇ [10,2] matching
continuously and differentiably to the radial function K in Equation (14). Collec-
ting φ and φ̇ in a row vector

U(e, r) ≡
(
φ(e, r), φ̇(e, r)

)
,

a simple case of this matching condition may be expressed as U(e, s)Ω(e, κ) =
K(κ, s) and U′(e, s)Ω(e, κ) = K′(κ, s), where Ω is a matrix of order 2.

The use of these radial functions in the method described here is different
than that used by most other methods, however. For the broadest utility, a basis
set must be flexible enough to describe energy levels derived from atomic states
having different principle quantum numbers but the same angular momentum
quantum number. For example, describing the properties of elemental actinides
at any pressure requires a basis with both 6p and 7p character. Similarly, an
adequate calculation of the structural properties of transition metal oxides re-
quires both semi-core and valence s and p states on the transition metal ions.
The description of the evolution of core states from localized to itinerant un-
der pressure also requires multiple principle quantum numbers per � value. It is
usual in LMTO-based methods to perform calculations for the eigenstates and
eigenvalues of “semi-core” and valence states separately, using a different basis
set, with a single set of energy parameters {e�}, for each “energy panel”. This
approach fails when energy panels overlap, and has the disadvantage that the
set of eigenvectors is not an orthogonal set. The problem of “ghost bands” also
arises.[2]

In the method described here, bases corresponding to multiple principle quan-
tum numbers are contained within a single, fully hybridizing basis set. This is
accomplished simply by using functions φ and φ̇ calculated with energies {en�}
corresponding to different principal quantum numbers n to describe the radial
dependence of a basis in the muffin-tin spheres. The Hamiltonian matrix for
an actinide, for example, will have elements

〈
ψ6p

∣∣H∣∣ψ7p

〉
and the overlap ma-

trix elements
〈
ψ6p

∣∣ψ7p

〉
, We may formally express the radial part of basis i in

a muffin-tin sphere by the function f(r) =
∑

n ai(n�)U(en�, s)Ω(en�, κi) but in
practice it is sufficient to restrict the coefficients by ai(n�) = δ(n, ni) so that
the basis set (although not eigenvectors) will have pure principal quantum num-
ber “parentage”. This method of expanding the energy range of a basis set has
been used (and reported) extensively. Representative calculations in which this
method was essential are described in Reference [11].

Thus another parameter specifying a basis function is the set of energy para-
meters {et�} that will be used to calculate the radial basis functions φt� and φ̇t�
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used to express the basis function in muffin-tin spheres of each symmetry type.
A basis function in a muffin-tin sphere is therefore

ψi(k, r)
∣∣∣
rτ <st

=
�≤�m∑

L

UtL(ei,Dτrτ )Ωt�(ei, κi)SL,Li(κi, τ−τ ′,k) (15)

where ei means “use the energy parameter en� corresponding to the principal
quantum number specified for basis i” and

UtL(e, r) ≡ YL(r̂)Ut�(e, r) . (16)

The necessary cutoff in angular momentum has now been made explicit. The
2×2 matrix Ω matches U to K continuously and differentiably at the muffin-tin
radius. Specifically, Ω is specified by(

φt�(e, st) φ̇t�(e, st)
φ′

t�(e, st) φ̇′
t�(e, st)

)
Ωt�(e, κ) =

(
K�(κ, st) J�(κ, st)
K′

�(κ, st) J ′
� (κ, st)

)
(17)

In principle, and as programmed, each (τ�κ) basis can use its own unique
energy set. It is more usual to use a common energy set for a set of basis states
giving rise to bands of similar energy within the scope of a particular calcula-
tion. The configuration of the basis shown in Table 1 for example uses a set of
energies for “semi-core” 6s and 6p bases, and another set of energies to repre-
sent “valence” bases. The calculation of energies in an energy parameter set is
discussed below.

A parameter introduced in (15) is the angular momentum cut-off �m. In most
cases, a converged total energy is achieved with values �m ∼ 6 − 8. Note that
since a basis set generally contains functions based on spherical waves with � ≤ 3,
the KKR structure constant in (13) is rectangular.

Table 1. Parameters for typical basis set for an elemental actinide: parent angular
momentum parameter (�), energy set for radial expansions (e-set), and the index of
the kinetic energy in the interstitial region(κ-index). A typical set of κ2 values, corre-
sponding to the kinetic energy indices, is given at the bottom of the table.

n � e-set κ-index n � e-set κ-index n � e-set κ-index
6 s 1 1 7 s 2 3 6 d 2 3
6 s 1 2 7 s 2 4 6 d 2 5
6 p 1 1 7 s 2 5 5 s 2 3
6 p 1 2 7 p 2 3 5 s 2 5

7 p 2 4
7 p 2 5

κ2: 1: −1.96582916 3: −3.44402161
2: −.193652690 4: −1.56582916

5: .331719550



154 J M Wills et al.

3 Matrix Elements

3.1 Muffin-Tin Matrix Elements

The potential in a muffin-tin at τ has an expansion in linear combinations of
spherical harmonics invariant under that part of the point group leaving τ in-
variant:

V (r)
∣∣∣
rτ <st

=
∑

h

vht(rτ )Dht

(
Dτ r̂τ

)
(18a)

Dht(r̂) =
∑
m

αht(m)C�hm(r̂) . (18b)

The utility of referring bases and potentials in muffin-tin spheres to site-local
coordinates is apparent in (18a). If the site local coordinates of sites are con-
structed so that Dτ ′ = DτQ−1 for some Q such that Qτ = τ ′, then the harmonic
functions Dht depend only on the symmetry type, rather than on each site. The
normalization for the spherical harmonic in (18a) (C =

√
4π/(2�+1)Y) is chosen

so that vht(r) is the potential when �h = 0.
Combining (15) and (18a), the potential matrix is

〈
ψi

∣∣V ∣∣ψj

〉∣∣∣
mt

=
∑

τ

∑
L

S†
L,Li

(κi, τ−τ i,k) (19)

×
(∑

h

∑
L′

ΩT
t�(ei, κi)

〈
UT

t�(ei)
∣∣vht

∣∣Ut�(ej)
〉
Ωt�(ej , κj)

〈
L

∣∣Dht

∣∣L′〉 SL,Lj
(κj , τ−τ j ,k)

)
.

The matrix element of the Dht is a sum over Gaunt coefficients:〈
L

∣∣Dht

∣∣L′〉 =
∑
mh

αht(mh)G
(
�′, m′; �, m; �h, mh

)

G
(
�′, m′; �, m; �h, mh

)
=

∫
Y�′m′Y∗

�mC�hmh

In electronic structure methods using muffin-tin orbitals, the muffin-tin energy
parameters {e� are usually taken from “�-projected average energies”. With mul-
tiple energy sets, this is a reasonable choice provided that the basis set, which
uses separate sets, gives rise to bands well separated in energy. The �-projected
charge, integrated over a muffin-tin sphere, is a sum over cross terms between
energy sets

Q� =
∑
ij

Q�(ei, ej)

and must be made diagonal in some approximation for the resulting energy- and
�-projected energies and charges to be representative.
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Another criterion, particularly useful for states using different sets not well
separated in energy or for states not having significant occupation is to maximize
the completeness of the basis. To accomplish this, the energy parameter for the
low energy state e�(1) can be set to a set of projected energy averages, and the
energy parameters for the same � in higher energy sets may be chosen so that
the radial function has one more node and the same logarithmic derivative at
the muffin-tin radius, hence∫ s

0
r2dr φ�(e1, r)φ�(ei, r) = 0 , i > 1 . (20)

Although this usually generates energy parameters out of the range of occupied
states (since the logarithmic derivative of semi-core states is usually large in
magnitude and negative), this choice seems to give a total energy close to the
minimum with respect to this parameter. This is an example of the difference
mentioned in the introduction in emphasis between an accurate “basis-set” me-
thod and a method motivated by a physical model.

The convergence of the harmonic expansion of the potential in a muffin-tin
sphere (18a) depends, of course, on the basis, atomic constituents, and geometry.
Using harmonics through �hmax

= 6 is usually sufficient, and it has never been
necessary to go beyond �hmax = 8.

3.2 Interstitial Matrix Elements

Overlap and Kinetic Energy: The interstitial overlap matrix can be easily
obtained from an integral over the interstitial surface (the only non-zero contri-
butions, in a crystal periodic in three dimensions, come from the surfaces of the
muffin-tin spheres) and the kinetic energy is proportional to the overlap:∫

I
ψ†

i (r)ψj(r) = −(κ2
j − κ2

i )
−1

∫
I

(
ψ†

i ∇2ψj − (∇2ψ†
i )ψj

)
= (κ2

j − κ2
i )

−1
∑

τ

s2
t

∫
dΩτW (ψ†

i , ψj) (21)

where W (f, g) = fg′ − f ′g. Basis functions on muffin-tin spheres are given in
(14), hence

〈
ψi

∣∣ψj

〉∣∣∣
I
=

∑
τ

s2
t

∑
L

S†
L,Li

(κi, τ−τ i,k)

×
W

(
KT

� (κi, st),K�(κj , st)
)

κ2
j − κ2

i

SL,Lj
(κj , τ−τ j ,k) (22)

In the limit κ2
j → κ2

i , the evaluation of (21) requires the derivative with respect
to κ2 of the structure constant.
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Potential Matrix Elements: The greatest difference between LMTO-based
full-potential methods is in the way the matrix elements of the potential are
calculated over the interstitial region. The method being described here uses a
Fourier representation of basis functions and the interstitial potential to calcu-
late these matrix elements. Other approaches for computing these elements are
described in the literature. [4,5]

A Fourier transform of the basis functions described in Section 2 would be
too poorly convergent for practical use. However, the evaluation of the inter-
stitial potential matrix requires only a correct treatment of basis functions and
potential in the interstitial region. This degree of freedom can be used to design
“pseudo basis-set”, equal to the true basis in the interstitial region although not
in the muffin-tin spheres, and have a Fourier transform which converges rapidly
enough for practical use. We define this pseudo basis set by

ψ̃i(k, r)
∣∣∣
r∈I

=
∑
R

eik·RK̃�i(κi, |r−τ i−R|)i�Y�imi(r−τ i−R) (23a)

K̃�(κ, r) ≡ K�(κ, r), r > s, s ≤ sτ (23b)

Since rapid Fourier convergence is the criterion for constructing the pseudo-
basis, it is useful to consider the Fourier integral of a Bloch function with wave-
number k:

ψ̃(g) = − 1
Vc(|k+g|2 − κ2)

∫
Vc

d3r e−i(k+g)·r(
∇2+κ2)ψ̃(r) (24)

where Vc is the unit cell volume. Equation (24) is obtained by casting ∇2+κ2

on the plane wave then doing two partial integrations; surface terms vanish due
to periodicity. From (24) it is evident that the Fourier integral of a pseudo-basis
satisfying the first criterion (equal to the true basis in the interstitial region) may
be obtained from integral over muffin-tin spheres. If in addition, the pseudo-basis
is different from a Hankel function only in it’s parent sphere, the Fourier integral
is a finite integral over a single muffin-tin sphere. The problem then is to find
a function ψ̃ such that (∇2+κ2)ψ̃ has a rapidly convergent Fourier integral,
vanishes outside a radius less than or equal to the parent muffin-tin radius for
the basis, and has a value and slope equal to K at this radius.

A good choice for such a function is obtained by solving

(
∇2 + κ2) K̃�(κ, r)YL(r̂) = −c�

(r

s

)�[
1 −

(r

s

)2]n

YL(r̂)Θ(s − r) (25)

for a radius s < sti
, and with with c� chosen to match on to K at s. This is

easily done analytically. The resulting Fourier transform is

ψ̃i(k+g) =
4π
Vc

YLi(k+g)e−i(k+g)·τ i

(|k+g|2 − κ2
i )

|k+g|�i
JN (|k+g|, s)

JN (κi, s)
(26)

where N = �i+ni+1. The subscript i has been purposely left off N and s (see
below).
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These coefficients converge like 1/gn+4, provided JN (|k+g|, s) achieves it’s
large argument behavior, and n can be chosen to optimize convergence. Weinert
[12] used an analogous construction as tool to solve Poisson’s equation. He pro-
posed a criterion for the convergence of the Fourier series (26) which amounts to
choosing the exponent n in Equation (26) so that |k+gmax|s would be greater
than the position of the first node of J�+n+1. We find this criterion to be useful
provided anisotropy in reciprocal space is accounted for. This is accomplished by
using the minimum reciprocal lattice vector on the surface of maximal reciprocal
lattice vectors, rather than simply using gmax.

Notice that this criterion is a criterion for N = �+n+1. The basis Fourier
components are simplified, and the amount of information stored reduced, by
simply using a single argument for all bases; i.e. all bases use the same value of N .
It is also possible to use a single radius s, less than or equal to the smallest muffin-
tin radius, since the only requirement is on the pseudo bases in the interstitial
region. In practice, a few radii are desirable if large and small atoms are present in
the same calculation, since small radii give less convergent Fourier coefficients.
In any event, no more than a few radii are necessary to handle systems with
many atoms. Notice also that local coordinates have been left out of (26). The
resulting potential matrix may be easily rotated to local coordinates at the end
of the calculation.

As expressed in (26), the Fourier components are products of phases
e−i(k+g)·τ , which scale like the number of atoms squared (the size of the reci-
procal lattice grid grows linearly with the number of atoms), and a function of
lattice vectors and a few parameters, which scales linearly with the number of
atoms. The phase factors are simple to calculate by accumulation and need not
be stored.

The potential in the interstitial region is similarly obtained from a “pseudo-
potential” Ṽ that equals the true potential in the interstitial region and has
rapidly converging Fourier coefficients:

V (r)
∣∣∣
I
= Ṽ (r)

∣∣∣
I

(27a)

Ṽ (r) =
∑
S

Ṽ (S)DS(r) (27b)

DS =
∑
g∈S

eig·r (27c)

The sum in Equation (27b) is over stars S of the reciprocal lattice.
Integrals over the interstitial region are performed by convoluting the po-

tential with an interstitial region step function and integrating over the unit
cell: 〈

ψi

∣∣V ∣∣ψj

〉
I =

〈
ψ̃i

∣∣Ṽ ∣∣ψ̃j

〉
I =

〈
ψ̃i

∣∣θI Ṽ
∣∣ψ̃j

〉
c

.

The potential matrix element is calculated by convoluting the convoluted po-
tential with a basis, and performing a direct product between convoluted and
unconvoluted bases. If basis functions are calculated n3 reciprocal lattice vectors,
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the interstitial potential will be calculated on (2n)3 vectors. The convolution is
exact if it is carried out on a lattice containing (4n)3 vectors. The size of the
set of reciprocal lattice vectors necessary to converge the total energy using
this treatment of the interstitial region varies from between ∼ 150 – 300 basis
plane waves per atom, depending on the smoothness of the potential and the
convergence required.

Another way of integrating over the interstitial region, more usual in site-
centered methods, is to integrate Fourier series over the unit cell and subtract
the muffin-tin contributions with pseudo-bases and pseudo-potential expressed
as an expansion in spherical waves. The convolution has an advantage in acting
with a single representation, and, given a finite representation for bases and
potential, the convolution may be done exactly.

Empty spheres are never used with this scheme. Bases, and the charge den-
sity and potential are calculated as accurately as necessary using the scheme
described above and a basis set expanded with tail parameters and energy sets
has proven to be flexible enough to accurately describe the contribution of the
electronic states in the interstitial region.

4 Charge Density

When a solution to the wave equation at every physical energy is available, the
charge density may be obtained from a set of energy-dependent coefficients. The
spherically symmetric charge density in a muffin-tin sphere, coupled with an
� − projected density of states, is an example. In a variational calculation, as is
being described here, all that is available is a (variational) solution to the wave
equation at a set of discreet energies, and the charge density must be obtained
simply from the square of the eigenvectors, or equivalently from expectation
values of occupation numbers.

Having calculated a set of eigenvalues and eigenvectors A of the generalized
eigenvalue problem, the charge density in the interstitial region is

ñ(r)
∣∣∣
I
=

∑
S

ñ(S)DS(r) (28a)

ñ(S) = 1
NS

∑
g∈S

∑
nk

wnk
1
Vc

∫
Vc

d3r e−ig·r∣∣ ∑
i

ψ̃i(k, r)Ai(nk)
∣∣2 (28b)

where NS is the number of vectors in the reciprocal lattice star S. The square of
the wave function is obtained by convoluting the Fourier components of ψ with
A, Fourier transforming, and taking the modulus.
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In the muffin-tin spheres the charge density is

n(r)
∣∣∣
rτ <st

=
∑

h

nht(rτ )Dht(Dτrτ ) (29a)

nht(r) =
∑
e�

∑
e′�′

Ut�′(ei′ , r)Mht(e�, e′�′)UT
t�(ei, r) (29b)

Mht(e�, e′�′) =
2�h+1
4π

∑
mhmm′

α∗
ht(mh)G

(
�, m; �′, m′; �h, mh

)
(29c)

×
∑
nk

wnkVτ�m(e)V†
τ�′m′(e′)

Vτ�m(e) =
∑

i

δ(e, ei)Ωt�(e, κi)S�m,�imi(κi, τ−τ i,k)Ai(nk) (29d)

The process of calculation is evident in the sequence of equations.

5 Core States

Core states, even spherically symmetric complete shells, contribute non-muffin-
tin components to the interstitial region and to muffin-tin spheres surrounding
other sites. Whether it is essential to include this contribution depends on the
size of the contribution, and any sizable contribution implies that there are states
being treated as localized which aren’t localized within the scope of the calcula-
tion. Nevertheless, confining states to the core is often useful, and including the
core contribution to the full potential is not difficult. One possibility, the one
used in this method, is to fit the part of the core electron density to a linear
combination of Hankel functions, and expand this density in the interstitial re-
gion as a Fourier serie and in the muffin-tin spheres in a harmonic series, in the
same way the basis functions are treated.

6 Potential

6.1 Coulomb Potential

The Coulomb potential is obtained by first calculating the Coulomb potential
in the interstitial region, then, using the value of the interstitial potential on
the muffin-tin sphere, calculating the potential in the spheres by a numerical
Coulomb integral of the muffin-tin electron density for each harmonic.

The interstitial Coulomb potential is calculated in a way similar to that
suggested by Weinert [12]. Express the electron density as

n(r) = ñ(r) +
∑
Rτ

(
n(r) − ñ(r)

)
Θ(st − rτ ) (30)

where ñ is the squared modulus of the pseudo-eigenvectors, which is equal to
the true electron density in the interstitial region. The first term on the right-
hand side of (30) has, by construction, a convergent Fourier series. The second
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term is confined to muffin-tin spheres. To calculate the Coulomb potential in
the interstitial region, this term may be replaced by any density also confined
to the muffin-tin spheres and having the same multipole moments. If a charge
density satisfies these requirements and also has a convergent Fourier series, the
Coulomb potential in the interstitial region may be easily calculated from the
combined Fourier series. Such a charge density can be constructed in a similar
way to that detailed for the pseudo-bases. Construct a pseudo charge-density
satisfying

ñ(p)(r) =
∑
Rτ

∑
h

ñ(p)(ht, rRτ )Dht(Dτ ˆrRτ ) (31a)

ñ
(p)
ht (r) = cht

( r

st

)�h
(
1 −

( r

st

)2)n

Θ(st−r) (31b)

0 =
∫

τ

d3r r�
τD∗

ht(Dτ r̂τ )
(
ñ(p)(r)−n(r)+ñ(r)

)
. (31c)

This charge density has Fourier components

ñ(p)(r) =
∑

τ

∑
h

e−ig·τ (−i)�hDht(Dτg)
4π
Vc

(Qht{n}−Qht{ñ})
s�h+n+1

×
(
2(�h+n+1) + 1

)
!!

(2�h + 1)!!
g�hJ�h+n+1(g, st) (32)

where the multipole moments Q are defined by

Qht{n} =
2�h+1
4π

∫
st>rτ

r�h
τ Dht(r̂τ )n(r) d3rτ (33)

The Fourier components ñ(p)(r) converge like 1/gn+2 provided j�+n+1 attains
it’s asymptotic form. The exponent n is chosen using the same considerations as
for the pseudo-basis set.

The Coulomb potential in the interstitial region is then given by

Vc(r)
∣∣∣
I
= Ṽc(r)

∣∣∣
I

=
∑
g 
=0

4πe2
(
ñ(g)+n(p)(g)

)
g2 eig·r (34)

From the Coulomb potential in the interstitial region follows the Coulomb
potential on the surface of the muffin-tin spheres. The coulomb Potential inside
the muffin-tin spheres is

V (c)(r)
∣∣∣
rτ <st

=
∑

h

Dht(Dτ r̂τ )
[
e2

∫ st

0

r�h
<

r�h+1
>

4πr′2nh(r)
2�h+1

dr′ (35)

+
(
V

(c)
h (s) − e2

s�h+1

∫ s

0

4πr′�h+2nh(r′)
2�h+1

dr′
)(r

s

)�h
]
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where

V
(c)
ht (st) ≡ 2�h+1

4π

∫
rτ=st

dr̂D∗
ht(Dτ r̂)V (c)(r) (36)

is the harmonic component of the potential on a sphere boundary.

6.2 Density Gradients

Gradients of the electron density are needed for the evaluation of gradient cor-
rected density functionals. These functionals depend on invariants (with respect
to the point group) constructed from density gradients (e.g. |∇n|2). This re-
duces computation significantly in the muffin-tin spheres, for if f and g are
invariant functions (i.e. f(r) =

∑
h fh(r)Dh(r̂)), and d = ∇f · ∇g, then d(r) =∑

h dh(r)Dh(r̂) with

4πr2

2�h+1
dh(r) =

∑
h,h′

∑
k,k′=±1

f
(k)
h (r)g(k′)

h′ (r)I(kk′;hh′) (37)

where the set of parameters I is easily calculable from 3j and 6j coefficients and
integrals over the harmonic functions Dh, and

f
(k)
h =

4π
2�+1

{
rf ′ − �h k = 1
rf ′ + �h + 1 k = −1

(38)

and similarly for g.
Gradients of the interstitial charge density, represented as a Fourier series,

are poorly represented by differentiating the series term by term. A stable repre-
sentation of the density gradient that converges well is obtained by defining the
derivative as the difference between adjacent grid points, divided by twice the
grid spacing as suggested by Lanczos.[13] This is equivalent to differentiating,
term by term, the Lanczos-damped series for the charge density.

7 All-Electron Force Calculations

7.1 Symmetry

The set of internal forces acting on the atomic sites of a crystal is a symmetric,
discrete function of atomic coordinates and has a spherical expansion on the
crystal sites with the same coefficients as continuous symmetric functions (8a)
and (8b). Since forces are vectors, their representation has � = 1, and if a site
has no invariant harmonics with � = 1, there is no force on that site. So the force
on an atomic site may be expressed as

f(τ) =
∑

h:�h=1

fht

∑
m

αmêm Uτ (39)
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Fig. 1. The deviation of the internal coordinates of rhombohedral BaTiO3 from ideal,
calculated using all-electron force calculations as a function of volume with both LDA
(open symbols) and GGA (filled symbols) exchange-correlation functions. The grey
filled symbols are experimental points[16]. The LDA equilibrium volume is .958 Vexp;
the GGA volume is 1.037 Vexp. The energy was also minimized with respect to the
rhombohedral angle at each volume.

where the coefficients α are as in (8b), the êm are spherical unit vectors, [14] and
Uτ is the transformation to local coordinates for spherical vectors. A force calcu-
lation is, as much as possible, a calculation of the set {fht}; The size of this set
is often much smaller than three times the number of atoms. The displacements
of atoms allowed by symmetry also have the form of (39):

δτ =
∑

h:�h=1

δτht

∑
m

αmêm Uτ (40)

Minimizing the energy with respect to the atomic positions is a process of
finding the set {δτht} that gives fht = 0.

7.2 Force Calculations

The calculation of forces in an all-electron method has been nicely described
by Yu et al. [15] for the LAPW method. In addition to the terms discussed in
that paper, a force calculation using a site-centered basis has the additional,
and significant, complication that the bases depend on atomic position not only
through augmentation but also through parentage.

The contributions to the total force on a site in an all-electron calculation
follow directly from a derivative of the LDA total energy with respect to atomic
positions. The terms listed by Yu et al. are 1) a “Helmann-Feynman” term,
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∂E/∂τ , which accounts for the explicit dependence of the energy functional on
atomic positions, 2) an “Incomplete Basis Set” (IBS) term, which arises when
derivatives of basis functions aren’t contained in the space covered by the basis
set, 3) a core-correction term, arising because core states are calculated using
only the spherical average of the potential, and 4) a muffin-tin term, a surface
term arising from the change in integration boundaries when atoms are moved
and the discontinuity of the second derivative of basis functions across muffin-
tin boundaries. There are two other terms to consider. The first arises when a
calculation isn’t fully self-consistent, and has the form −

∫
Vc

(Vout−Vin)dn(r)/dτ ,
where Vout and Vin are output and input potentials. The second term arises
from the way in which Brillouin zone integrals are done. Whether by quadrature
or linear interpolation, the result is a set of weights (occupations) multiplying
quantities evaluated at discrete Brillouin zone points. The terms listed above do
not take into account the change of weights with atomic positions.

The evaluation of the IBS term in a method using site-centered bases is
significantly more involved than in the LAPW method. This term has the form

F IBS = −
∑
nk

wnk

∑
ij

A∗
i,nk

( 〈
ψi

∣∣H − enk

∣∣dψj/dτ
〉

+
〈
dψi/dτ

∣∣H − enk

∣∣ψj

〉)
Aj,nk (41)

where the A are eigenvectors. Both LAPW and LMTO methods have a depen-
dence on atomic positions through augmentation (the expansion of the basis
set in atomic-like spherical waves) in the muffin-tin spheres, and both methods
have an implicit dependence of basis functions on atomic positions through self-
consistency, a term largely ignored and usually negligible. A site-centered basis,
however, depends on atomic positions also through it’s parent site (the site it’s
centered on). The contribution from augmentation is fairly easily accounted for
at the density stage of a calculation, after integrals over the Brillouin zone have
been done. The parent contribution, however, requires evaluation at the part
of the calculation where eigenvalues and vectors are obtained, which makes its
calculation time consuming.

There are four types of contributions to dψ/dτ :

− d

dτ
ψi(k, r) = i

(
δ(1)

τ + δ(2)
τ + δ(3)

τ + δ(4)
τ

)
ψi(k, r) (42)

δ(1)
τ ψi(k, r) ≡ Θ(r ∈ I)δ(τi, τ) p̂ψi(k, r) (43)

δ(2)
τ ψi(k, r) ≡ δ(τi, τ)

∑
τ ′L

Θ(st′−rτ ′)Ut′L(ei, rτ ′)Ωt′�(ei, κi)

×
(

0
−i∇τBL,Li

(κi, τ
′−τ i,k)

)
(44)

δ(3)
τ ψi(k, r) ≡ Θ(st−rτ )

∑
L

p̂UtL(ei, rτ )Ωt�(ei, κi)SL,Li
(κi, τ−τ i,k) (45)
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δ(4)
τ ψi(k, r) ≡ −Θ(st−rτ )

∑
L

UtL(ei, rτ )Ωt�(ei, κi)

×
(

0
−i∇τBL,Li

(κi, τ−τ i,k)

)
(46)

where p̂ is the momentum operator −i∇. The first two terms, Equations (43)
and (44), are parent terms, changes in a basis due to a change in the site the
basis is centered on. The first term, Equation (43), is the derivative of the wave
function in the interstitial region (Equation (10) with respect to its parent site.
Since the gradient of a solution to the Helmholtz equation is a solution to the
Helmholtz equation, matrix elements

〈
ψi

∣∣p̂ψj

〉
I and

〈
ψi

∣∣−∇2
∣∣p̂ψj

〉
I are calcu-

lated as integrals over the surface of the muffin-tin spheres. As in Equation (22),
when interstitial region tail parameters are the same, the evaluation requires κ2

derivatives of structure functions. Working out this contribution proceeds as in
Equation (22), although arriving at a finite form requires identities such as

∑
µ

êµUτb

(
B�ama,�b−1 mb−µ(κb, τ a−τ b,k)G

(
�b−1, mb−µ; �b, mb; 1, µ

)
κ2

b

− B�ama,�b+1 mb−µ(κb, τ a−τ b,k)G
(
�b+1, mb−µ; �b, mb; 1, µ

))
=

∑
µ

êµUτa

(
B�a+1 ma+µ,�bmb

(κb, τ a−τ b,k)G
(
�a, ma; �a+1, ma+µ; 1, µ

)
− B�a−1 ma+µ,�bmb

(κb, τ a−τ b,k)G
(
�a, ma; �a−1, ma+µ; 1, µ

)
κ2

b

)
(47)

Potential matrix elements
〈
ψi

∣∣V ∣∣ψj

〉
are calculated using Fourier series as in

Sect. 3.2 with gradients taken as discussed after equation (38).
The second term, equation (42), is the analog of the first term in the muffin-

tin spheres; i.e., this term is the derivative of a basis with respect to its parent
site evaluated in the muffin-tin spheres. This term requires the gradient with
respect to atomic positions of the structure function B. This gradient is easily
obtained from the structure function itself:

B′
�m,�′m′(κ, τ−τ ′,k) ≡ ∂

∂u
B�m,�′m′(κ,u,k)

∣∣∣
u=τ−τ ′

≡
∑

µ

iêµUτB
′(µ)
�m,�′m′(κ, τ−τ ′,k)

B
′(µ)
�m,�′m′(κ, τ−τ ′,k) =

(
G
(
�, m; �+1, m+µ; 1, µ

)
B�+1m+µ,�′m′(κ, τ−τ ′,k)

−κ2G
(
�, m; �−1, m+µ; 1, µ

)
B�−1m+µ,�′m′(κ, τ−τ ′,k)

)
τ − τ ′ �= 0 (48)

If convergence with respect to � on the left hand side of the structure function
is sufficient for the energy, terms in �max +1 in Equation (48) may be neglected
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Fig. 2. Relaxation of a silicon 65 atom supercell containing a vacancy, a Si interstitial,
and an As interstitial. Of the 106 internal coordinates in this cell, 104 were allowed to
relax (2 coordinates were fixed to fix the center of mass of the crystal). The calculation
used a simple Broyden’s method to zero atomic forces.

in evaluating forces. As stated above, the evaluation of these terms is somewhat
time consuming.

Examples of the use of forces for structural relaxation are given in Figures
1 and 2. Figure 1 shows deviations from ideal lattice positions calculated for
rhombohedral BaTiO3 as a function of volume compared to experiment [16].
The rhombohedral angle was also relaxed at each volume in this calculation.
The Ti coordinate is a displacement along [111]. The oxygen displacements ∆x
are along face diagonals while ∆z is toward the cell center. These calculations
included Ti 3s and 3p and Ba 5s and 5p along with the usual valence bases in
a single, fully hybridizing basis. At convergence, forces on internal coordinates
were less than 1 mRy/Bohr. Figure 2 is a calculation of structural relaxation of
As-vacancy-interstitial complex in Si. To a sixty-four atom Si supercell was added
an As impurity at a tetrahedral interstitial position and a Si interstitial at an
exchange position both surrounding a vacancy. The crystal, far from equilibrium,
was then allowed to relax. Two internal coordinates (of a total of 106) were fixed
to fix the center of mass of the crystal. The energy was minimized with respect to
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the other 104 internal coordinates by zeroing the forces (to with 1 mRy/Bohr).
The forces were zeroed using a simple Broyden’s method.

8 Conclusion

In this article we have described our highly accurate full-potential LMTO me-
thod for solving the Kohn-Sham equations. In particular, we have shown that
by dividing the crystal space into non-overlapping “muffin-tin” spheres and an
interstitial region, we can compute the charge density or the potential without
any shape approximation, thus eliminating any need for empty spheres which
are necessary in other LMTO implementations when the crystal is not closely
packed. Another feature of our implementation is that we can describe multiple
principle quantum numbers within a single, fully hybridized basis set. This is
accomplished simply by using functions φ and φ̇ calculated with energies {en�}
corresponding to different principal quantum numbers n to describe the radial
dependence of a basis in the muffin-tin region. In the interstitial region our
method uses “multiple κ” basis sets, for a better description of the interstitial
charge density. Highly accurate charge density can be obtained by systematically
increasing the number of variational parameters κ for each angular momentum
of the basis set.

The potential in a muffin-tin sphere at τ has an expansion in linear com-
binations of spherical harmonics invariant under that part of the point group
that leaves atomic positions invariant. The evaluation of the interstitial poten-
tial matrix only requires a correct treatment of basis functions (and potential)
in the interstitial region. We have used this degree of freedom to design “pseudo-
basis functions”, equal to the true basis functions in the interstitial region and
are smooth functions in the muffin-tin region, with the requirement that their
Fourier transforms converge rapidly enough for practical use.

The set of internal forces acting on the atomic sites of a crystal is a sym-
metric, discrete function of atom coordinates and has a spherical expansion on
the crystal sites with the same coefficients as continuous symmetric functions.
The total force on a site is given by the derivative of the LDA total energy with
respect to the atomic position. Our implementation of the forces is in many
ways similar to that of Yu et al. for the LAPW method [15]. Because our basis
set is a site-centered one, we are required to compute additional terms, which
can be time consuming. These contributions to the forces are non existant in
plane-wave based methods, such as the pseudo-potential method. In addition
to the “Helmann-Feynman” term, which accounts for the explicit dependence
of the energy functional A on atomic positions, the other contributions are: (1)
an “Incomplete Basis Set” term, (2) a core-correction term, (3) a surface term
arising from the change in integration boundaries when atoms are moved, (4) a
term which arises when the calculation isn’t fully self-consistent, and (5) a term
arising from the way in which the Brillouin zone integrals are performed. We
have showed that the forces are accurate enough to relax atomic structures. As
examples, forces have been used to optimize the internal coordinates of rhom-
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bohedral BaTiO3 as a function of volume and the geometry of a 65 atom As,
vacancy, and interstitial defected Si supercell. Where experimental results are
available, good agreement is obtained.
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Abstract. The most popular electronic structure method, the linear muffin-tin orbital
method (LMTO), in its full-potential (FP) and relativistic forms has been extended
to calculate the spectroscopic properties of materials form first principles, i.e, optical
spectra, x-ray magnetic circular dichroism (XMCD) and magneto-optical kerr effect
(MOKE). The paper describes an overview of the FP-LMTO basis set and the calcula-
tion of the momentum matrix elements. Some applications concerning the computation
of optical properties of semiconductors and XMCD spectra of transition metal alloys
are reviewed.

1 Introduction

The density functional theory (DFT) of Hohenberg, Kohn, and Sham is the
method of choice for describing the ground-state properties of materials [1].
However, in the initial derivation of the DFT, the eigenvalues are Lagrange mul-
tipliers introduced to orthogonalize the eigenvectors, which in their turn are
used to compute the total energy and the charge density. In this formulation
the eigenvalues have therefore no physical meaning and should not be conside-
red as excited states. Nevertheless, the DFT in the local density approximation
(LDA) or in its spin resolved local density formulation (LSDA), has been used
successfully to compute the excited states, namely, optical and magneto-optical
properties, x-ray absorption and magnetic dichroism spectra.
The LDA or LSDA were indeed intended to compute the ground-state pro-

perties of materials, and their use during the last two decades has produced an
excellent track record in the computation of these properties for a wide variety of
materials, ranging from simple metals to complex semiconductor superlattices.
However, it is now believed that the DFT can do more than computing the gro-
und state properties. This is because the Kohn–Sham equations could be viewed
as deriving form a simplified quasi-particle (QP) theory where the self-energy is
local and time averaged, i.e., Σ(r, r′, t) ≈ Vxc(r)δ(r− r′)δ(t), here Vxc(r) is the
local exchange and correlation potential as, for example, parameterized by Von
Barth and Hedin [2]. Viewed in this way, the KS eigenvalues are then approxi-
mate QP energies and could be compared to experimental data. This argument
is supported by quasiparticle calculations within the so called GW approxima-
tion of Hedin [3] showing that the valence QP energies of semiconductors are in
good agreement with these obtained using LDA, and the conduction QP energies

H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 168−190, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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differ by approximately a rigid energy shift [4,5]. In the literature this shift is
often called “scissors-operator” shift [6].
In the last few years spectroscopy is becoming the standard tool for measuring

excited states of materials. Its owes its impressive advances to the availability of
synchrotron tunable highly polarized radiation. In particular, the measurement
of optical, magneto-optical properties as well as magnetic x-ray dichroism are
now becoming routine tasks for probing the structural and magnetic properties of
materials. Considerable attention has been focused on transition-metal surfaces
and and thin films due to their novel physical properties different from that of
bulk materials and due to potential industrial applications such as magneto-
optical recording, sensors, or technology based on giant magneto-resistance. In
this respect, theory is falling far behind experiment and it is becoming hard to
give a basic interpretation of experimental data.
This paper, which is far from being a review paper about calculated excited

states, tries to bridge the gap between experiment and theory by describing a rat-
her quantitative method for computing excited states of materials. This method
uses the local density approximation and the linear muffin-tin orbital (LMTO)
method. In the first part of this paper we introduce the density functional theory
and the local density approximation and justify the use of LDA eigenvalues as ap-
proximate excited states and relate them to quasiparticle energies. In the second
part we describe the construction of the LMTO basis set within an all-electron
full-potential approach [7,17] which will be used to determine the momentum
matrix elements. We devote the third part to the determination of the momen-
tum matrix elements. In the first part of the application section we present some
examples of computation of semiconductors optical spectra [9,10], and leave out
the optical properties of metals and magneto-optical properties of materials and
refer the reader to Ref. [11,12,9,14–19]. In the second part of the applications
we show some examples of x-ray magnetic dichroism calculations [20–22].

2 Density Functional Theory

The density functional method of Hohenberg and Kohn [1] which states that the
ground state total energy of a system of N interacting electrons in an external
potential Vext is a functional of the electron density ρ(r) does not provide an ana-
lytical form of the functional [1]. This method remains numerically intractable
without the Kohn and Sham introduction of the so called local density approxi-
mation [1] in which the exchange and correlation functional Exc{n} appearing
in the total energy:

E{n} = T{n}+ e2

2

∫
d3r

∫
d3r′n(r)n(r

′)
|r− r′| + Exc{n}

+
∫
d3r Vext(r)n(r) + E(Vext) (1)
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is given by Exc{n} =
∫
d3r εxc

(
n(r)

)
n(r) where εxc is the exchange-correlation

energy of a uniform electron gas of density n. Thus, Kohn and Sham constructed
a set of self-consistent single-particle equations:

(
−∇2 +

δ

δn

(
E − T

))
ψ(r) = eiψi(r) (2)

where the density n(r) is given by:

n(r) =
∑
i

θ(ei < EF )ψi(r)ψ
†
i (r) (3)

and

Vext(r) = −e2
∑
Rτ

Zτ
|r− τ −R| (4)

E(Vext) = e2
∑
τR

∑
τ ′R′

(
1− δ(R,R′)δ(τ, τ ′)

) ZτZτ ′

|τ +R− τ ′ −R′| (5)

Instead of the true kinetic energy of the electron gas, Kohn and Sham used
the homogeneous electron kinetic energy:

T̄ ≡
∑
i

θ(ei < EF)
∫
d3r ψ†

i (−∇2)ψi (6)

This use of homogeneous-electron kinetic energy in the Kohn–Sham equations
redefined the exchange-correlation function to be:

Ēxc{n} ≡
(
Exc{n}+ T{n} − T̄

)
=

∫
d3r εxc

(
n(r)

)
n(r) (7)

It is then crucial to use a good basis-set for the description of the electro-
nic structure of realistic systems. The augmented plane wave [23] (APW), and
the Korringa-Kohn-Rostoker [24] (KKR) methods can be used, in principle, to
solve exactly the Kohn–Sham equations, however these methods are numerically
involved and their linearization, introduced by Andersen is much preferable.
Andersen linearization, has not only made the techniques for solving the band-
structure problem transparent by reducing it essentially to the diagonalization
of one-electron Hamiltonian, and cuts the cost of computation by at least one
order of magnitude. The linearized versions of these two powerful methods are
the linear augmented plane wave (LAPW) and linear muffin-tin orbital (LMTO)
methods, respectively [17].
In this paper, we will only use the LMTO method to study excited states

of solids. The reason for this choice is that the LMTO method is the mostly
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used method in computational electronic structure. This is due primarily to the
use of atomic-sphere approximation (ASA) which made the LMTO method run
fast even on today’s cheap personal computers. Due to this reduced computa-
tional cost, the LMTO ASA method became the method of choice of researchers
without access to supercomputers.

3 Quasiparticle Theory and Local-Density Approximation
Link

The quasiparticle (QP) electronic structure of an interacting many-body system
is described by the single-particle eigenstates resulting from the interaction of
this single particle with the many-body electron gas of the system. The single-
particle eigenstate energies are the results of solving a Schroedinger like equa-
tion containing the non-local and energy-dependent self-energy instead of the
exchange-correlation potential appearing in Kohn–Sham like equations:

(T + VH + Vext)Ψ(r) +
∫
d3r′Σ(r, r′, E)Ψ(r′) = EΨ(r).

Thus the self-energy Σ contains all many-body effects. Almost all ab-initio
QP studies were performed within the so-called GW approximation, where the
self-energy Σ is calculated within Hedin’s GW approximation. This method
consists of approximating the self-energy as the convolution of the LDA self-
consistent Green function G and the screened coulomb interaction W within
the random-phase approximation. The QP eigenvalues are often obtained using
first-order perturbation theory starting from LDA eigenvalues and eigenvectors
[4,25]. Although there are early calculations starting from Hartree-Fock [26] or
tight-binding [27] methods. Nevertheless, the best results are based on a LDA
starting point [4,25,28–30].
Thus the GW predicted optical excitations energies of semiconductors are

within 0.1 eV form the experimental results and the surprizing fact is that the
QP wave functions are almost identical to these produced within the LDA [4]
(the wave function overlap is more than 99%). For a general review of GW
calculations see the review by Araysetianwan and Gunnarsson [29] or by Aulbur,
Jönsson and Wilkins [30].
It is clear that the quasiparticle Schroedinger equation resembles to the

Kohn–Sham equation. Both equations describe a fictitious electron moving in
a effective potential. The difference is that the self-energy is nonlocal and energy
dependent whereas the LDA potential is local and averaged over time. This
resemblance can be further pushed by noticing that the DFT can be used to ob-
tain excitation energies. For example, the ionization energy, I, and the electron
affinity, A, are difference between ground state energies:

I = E(N − 1)− E(N), and A = E(N)− E(N + 1)
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where N is the number of electrons of the system. And since the DFT gives
the correct ground state energies it should produce, in principle, the correct
ionization and electron affinity energies. For metals, the addition or removal of
an electron from the system costs the same energy, and hence the ionization
energy is equal to the electron affinity. For insulators, the energy gap makes all
the difference and hence breaks this symmetry. Thus the energy band gap is
given by:

Eg = I −A = E(N + 1) + E(N − 1)− 2E(N)
In practice, however, the calculation is often obtained within the LDA and the

energy band gap is calculated as the difference between the lowest conduction
band and the highest valence band. It was shown by Sham and Schlüter [31]
and Perdew and Levy [32] that the calculated energy gap differ from the true
band gap by an amount ∆ even when the DFT is used without the LDA. The
∆ value could range from 50% in the case of silicon to 100% in the case of
germanium. For most of the semiconductors, the GW calculations show that
the LDA eigenvalues differ form the GW quasiparticle energy by a constant ∆
which is almost independent of the k-point. This finding is important and shows
that the LDA eigenvalues have some meaning and could be used to calculate
excited states. So as stated in the introduction, the Kohn–Sham equations could
be viewed as deriving form a simplified quasi-particle (QP) theory where the self-
energy is made local and time averaged, i.e., Σ(r, r′, t) ≈ Vxc(r)δ(r−r′)δ(t). This
approximation is certainly good for metals where we have a good data base for
excited state calculated within the LDA [11,12,9,14–19] and where the agreement
with experiment is good. For semiconductors, this approximation is not bad
either, provided we know the value of the discontinuity of the exchange and
correlation. Usually, this value is provided by GW calculations or by experiment.

4 The Full-Potential LMTO Basis Set

In this section we describe the LMTO basis-set used to calculate the excited sta-
tes of solids. We discuss the basis used for an all electron calculation where the
potential is not supposed to be spherically symmetric nor of muffin-tin type. The
use of a general potential makes the study of open structures possible without
having to resort to the so-called “empty-sphere” approximation. To define the
basis-set, we divide the space into non overlapping spheres called “muffin-tin”
spheres and a region between these spheres which we call interstitial region. In-
side the muffin-tin spheres the Schroedinger equation is solved at a fixed energy
for each angular momentum � and variational parameter κ (which is defined
later). The linearization amounts to the use of a linear combination of the so-
lution φ	(e, r) of the Schroedinger equation for a fixed energy and its energy
derivative φ̇	(e, r) inside the muffin-tin spheres. These linear combinations mat-
che continuously and differentiably to an envelop function (spherical function)
in the interstitial region. The Bloch wave function in the interstitial region is
given by a linear combination of these Hankel functions centered at each site:
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ψi(k, r) =
∑
R

eik·RKLi

(
κi, r−τi−R

)
(8)

where i stands for the number of the basis function quantum numbers (these
numbers are {τ, L, κ, {e	t}}), where τ is the site number, L = (�,m) groups the
two angular quantum numbers, and e	t is the linearization energy for a particular
atom type t and angular momentum number �. The envelop functions are defined
as KL(κ, r) ≡ K	(κ, r)YL(r̂).

Y	m(r̂) ≡ i	Y	m(r̂) (9)

K	(κ, r) ≡ −κ	+1
{
n	(κr), if κ2 > 0
n	(κr)− ij	(κr), if κ2 < 0, (κ = i|κ|) (10)

J	(κ, r) ≡ κ−	j	(κr) (11)

Here n	 is the Neumann function and j	 Bessel function for the angular
momentum �, and Y	m are the spherical harmonics.
To get the differentiability of the wave-function at the boundary of the muffin-

tin spheres, we write the envelope function inside the muffin-tin spheres. The
envelope function for a muffin-tin sphere τ ′ is given by:

∑
R

eik·RKL
(
κ, r−τ−R

)∣∣∣
rτ′<Sτ′

(12)

=
∑
L′

YL′(r̂τ ′)
(
K	′(κ, rτ )δ(τ, τ ′)δ(L,L′) (13)

+ J	′(κ, rτ )BL′,L(τ ′−τ, κ,k)
)

To produce smooth basis functions we require that the basis function is diffe-
rentiable at the boundary of each muffin-tin sphere, i.e., that a linear combination
of φ and φ̇ matches continuously and differentiably K and J at the boundary of
the parent sphere and other spheres, respectively. Using these matching conditi-
ons at the muffin-tin spheres, the Bloch wave function inside a muffin-tin sphere
τ of the unit cell at the origin is given by [7]:

ψi(k, r)
∣∣∣
rτ<Sτ

=
∑
L

YL(Dτ r̂τ )U	(e	ti, rτ )Ω(�t, e	tiκi)BL,Li(τ−τi, κi,k) (14)

where

U	(e, r) ≡
(
φ	(e, r)
φ̇	(e, r)

)
(15)
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Ω(�t, eκ) ≡ S2
τ

(
−W (K, φ̇) −W (J , φ̇)
W (K, φ) W (J , φ)

)
(W (f, g) ≡ fg′ − f ′g) (16)

BL,Li(τ−τi, κi,k) ≡
(
δ(τ, τi)δ(L,Li)
BL,Li(τ−τi, κi,k)

)
(17)

To add the spin dependence to the basis-set, the Bloch wave function is
multiplied by the eigenvector of the Pauli spin operator η±1:

ψσ(k, r) = ψ(k, r)ησ
such that:

n̂ · ση±1 = (±1)η±1

where η is the quantization axis chosen in advance.

5 Dielectric function

5.1 Dynamical Dielectric Function

Here we give a review of the determination of the dielectric response of a semi-
conductor due to the application of an electric field. We expend the description
of our published work [10] by giving more details concerning the calculation of
the momentum matrix elements.
An electromagnetic field of frequency ω, and a wave vector q+G interacting

with atoms in a crystal produces a response of frequency ω and a wave vector
q+G′ (G andG′ being reciprocal lattice vectors). The microscopic field of wave
vector q+G′ is produced by the umklapp processes as a result of the applied
field E0(q+G, ω)

E0(q+G, ω) =
∑
G′

εG,G′(q, ω)E(q+G′, ω) (18)

where E(q+G, ω) is the total field producing the non-diagonal elements in the
microscopic dielectric function εG,G′(q, ω). The microscopic dielectric function
in the random phase approximation is given by [33]:

εG,G′(q, ω) = δG,G′ − 8πe2

Ω|q+G||q+G′| (19)

×
∑

k,n,n′

fn′,k+q − fn,k
En′,k+q − En,k − �ω + iδ

〈n′,k+ q|ei(q+G)r|n,k〉〈n,k|e−i(q+G′)r|n′,k+ q〉
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Here n and n′ are the band indexes, fn,k is the zero temperature Fermi
distribution, and Ω is the cell volume. The energies En,k and the the crystal
wave function |n,k〉 are produced for each band index n and for each wave
vector k in the Brillouin zone.
The macroscopic dielectric function in the infinite wave length limit is given

by the inversion of the microscopic dielectric function:

ε(ω) = lim
q→0

1
[ε−1

G,G′(q, ω)]0,0
(20)

= ε0,0(ω)− lim
q→0

∑
G,G′ �=0

ε0,G(q, ω)T−1
G,G′(q, ω)εG′,0(q, ω)

where T−1
G,G′ is the inverse matrix of TG,G′ containing the elements εG,G′ with

G and G′ �= 0. The first term of this equation is the interband contribution
to the macroscopic dielectric function and the second term represent the local-
field correction to ε. The most recent ab-initio pseudopotential calculation found
that the local-field effect reduces the static dielectric function by at most 5% [6].
Previous calculations with the same method have also found a decrease of ε∞
by about the same percentage [4,34]. For insulators the dipole approximation of
the imaginary part of the first term of equation (21) is given by [35]:

ε2(ω) =
e2

3ω2π

∑
n,n′

∫
dk|〈n,k|v|n′,k〉|2fn,k(1− fn′,k)δ(ek,n′,n − �ω) , (21)

Here v is the velocity operator, and in the LDA v = p/m (p being the momen-
tum operator), and where ek,n,n′ = En′,k−En,k. The matrix elements 〈nk|p|n′k〉
are calculated for each projection pj = �

i ∂j , j = x or y and z, with the wave
function |nk > expressed in terms of the full-potential LMTO crystal wave fun-
ction described by equations (14) and (8). The k-space integration is performed
using the tetrahedron method [36] with a large number of irreducible k points
the Brillouin zone. The irreducible k-points are obtained from a shifted k-space
grid from the high symmetry planes and Γ point by a half step in each of the
kx, ky, and kz directions. This scheme produces highly accurate integration in
the Brillouin zone by avoiding high symmetry points.

5.2 Momentum Matrix Elements

To calculate these matrix elements we first defined a tensor operator of order one
out of the momentum operator ∇0 = ∇z = ∂

∂z and ∇±1 = ∓ 1√
2
( ∂∂x ± i ∂∂y ).

The muffin-tin part of the momentum matrix elements is calculated using the
commutator [∇2, xµ] = 2∇µ so that:∫

Sτ

drφτ	′(r) Y	′m′(r̂− τ)∇µφτ	(r)Y	m(r̂− τ) = − i
2G

1µ
	m,	′,m′

∫ Sτ

0 r2drφτ	′( 2r
d
dr r +

	(	+1)−	′(	′+1)
r )φτ	(r) (22)
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where G1µ
	m,	′,m′ are the usual Gaunt coefficients, and Sτ is the radius of the

muffin-tin sphere of atom τ . In the interstitial region the plane-wave representa-
tion of the wave function (see equation 8) makes the calculation straightforward,
but a special care has to be taken for the removal of the extra contribution in
the muffin-tin spheres. However, we find it much easier and faster to transform
the interstitial matrix elements as an integral over the surface of the muffin-
tin spheres using the commutation relation of the momentum operator and the
Hamiltonian in the interstitial region. The calculation of the interstitial momen-
tum matrix elements is then similar to the calculation of the interstitial overlap
matrix elements. The κ = 0 case has been already derived by Chen using the
Korringa, Kohn and Rostoker Greens-function method [37]. We have tested that
both the plane-wave summation and the surface integration provide the same
results.

−∇2 pψ = κ2pψ

A Hankel function can be integrated over a volume by knowing its integral over
the bounding surface:

∫
I
d3r∇

(
ψΛ

1∇piψ2 −
(
∇ψΛ

1
)
piψ2

)

=
(
κ2

1 − κ2
2
) ∫

I
d3rψΛ

1piψ2 (23)

The surface of the interstitial consists of the exterior of the muffin-tin spheres
and the unit cell boundary.
Over the surface of the muffin tins: the surface area is S2dΩ and the normal

to the sphere points inward

(
κ2

1 − κ2
2
) ∫

I
d3r ψΛ

1piψ2 = (24)

−
∑
τ

S2
τ

∫
dS

(
ψΛ

1
∂

∂r
piψ2 −

(
∂

∂r
ψΛ

1

)
piψ2

)

At a muffin-tin sphere boundary Sτ the Bloch wave function is given by:

ψi (k, r)
∣∣∣
Sτ

=
∑
R

eik·RKLi

(
κi, r−τi−R

)∣∣∣
Sτ

(25)

=
∑
	m

Y	m(r̂)K	(κi, S)B	m,	imi
(τ−τi, κi,k)

where B	m,	imi(τ−τi, κi,k) =
(
δ(τ, τi)δ(�, �i)δ(m,mi)
B	m,	imi

(τ−τi, κi,k)

)
and K =

(
K
J

)

Let W denote the Wronskian W (f, g) = fg′ − f ′g
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We define then

S2W0 = S2W (KT	 (κ),K	(κ)) =
(
0 1

−1 0

)

and

wτ	κ1, κ2 = Sτ
W (KT	 (κ)),K	(κ)−W0

κ2
1 − κ2

2

pψi|τ =
∑
µ

êµ
∑
	m

[
K	−1m−µ

(
κ2
i 0
0 1

)
G
(
�−1, m−µ; �, m; 1, µ

)

−K	+1m−µ

(
1 0
0 κ2

i

)
G
(
�+1, m−µ; �, m; 1, µ

)]

B	m,	imi(τ−τi, κi,k)
)

(26)

then

〈 ψfpψi〉τ = (27)∑
τ

∑
µ

êµ
∑
	m

[
B	−1m−µ,	fmf

(τ−τf , κf ,k)wτ	−1(κf , κi)

×
(
κ2
i 0
0 1

)
G
(
�−1, m−µ; �, m; 1, µ

)
−B	+1m−µ,	fmf

(τ−τf , κf ,k)wτ	+1(κf , κi)

×
(
1 0
0 κ2

i

)
G
(
�+1, m−µ; �, m; 1, µ

)]

B	m,	imi(τ−τi, κi,k)
)
+∆(f, i, κi)

where

(κ2
f − κ2

i )∆(f, i, κi) =
∑
µ

êµ(τi)
[

(28)

+B�	i+1mi−µ,	fmf
(τi−τf , κf ,k)G

(
�i+1, mi−µ; �i, mi; 1, µ

)
κ2

−B�	i−1mi−µ,	fmf
(τi−τf , κf ,k)G

(
�i−1, mi−µ; �i, mi; 1, µ

)
κ2

]

+
∑
µ

êµ(τf )
[

(29)

+B	f +1mi+µ,	fmf
(τf−τi, κi,k)G

(
�f , mi; �f+1, mf+µ; 1, µ

)

−B	f −1mf −µ,	imi(τf−τi, κi,k)G
(
�f , mf ; �f−1, mf+µ; 1, µ

)
κ2

]
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5.3 Velocity Operator and Sum Rules

Equation (21) can not be used directly to determine the optical properties of
semiconductors, when the GW approximation or the scissors operator is used
to determine the electronic structure. The velocity operator should be obtained
from the effective momentum operator peff which is calculated using the self-
energy operator, Σ(r,p), of the system [38]:

v = peff/m = p/m+ ∂Σ(r,p)/∂p (30)

GW calculations show that the quasiparticle wave function is almost equals to
the LDA wave function [4,5]. Based on this assumption, it can be easily shown
[38] that in the case of the scissors operator, where all the empty states are shifted
rigidly by a constant energy ∆, the imaginary part of the dielectric function is
a simple energy shift of the LDA dielectric function towards the high energies
by an amount ∆, i.e., εQP2 (ω) = εLDA

2 (ω −∆/�). The real part of the dielectric
function is then obtained from the shifted ε2 using Kramers-Kronig relations.
The expression of εQP∞ is given by:

εQP∞ = 1 +
2e2

3ω2π2

∑
n,n′

∫
dkfn,k(1− fn′,k)

|〈n,k|p|n′,k〉|2
(ek,n′,n +∆)e2k,n′,n

, (31)

εQP∞ is very similar to εLDA
∞ except that one of the interband gap ek,n′,n is sub-

stituted by the QP interband gap ek,n′,n +∆.
To test for the accuracy of the calculation within the LDA the f-sum rule:

2
3mnv

∑
k

∑
n,n′

fn,k(1− fn′,k)
|〈n,k|p|n′,k〉|2

ek,n′,n
= 1, (32)

where nv is the number of valence bands, should be always checked to ensure
the accuracy of the calculations.
It is easily seen that the dielectric function εQP2 calculated using the scissors-

operator shift does not satisfy the sum rule (ωP is the free-electron plasmon
frequency):

∫ ∞

0
ωε2(ω)dω =

π

2
ω2
P (33)

because (i) εLDA
2 satisfies this rule, and (ii) εQP2 is obtained by a simple shift of

εLDA2 by the scissors-operator ∆ towards higher energies. The non simultaneous
satisfaction of both the f-sum rule and the integral sum rule within the scissors
approximation shows the limitation of this approximation. While the scissors
operator approximation describes nicely the low lying excited states, which is
seen in the good determination of the static dielectric function and the low energy
structures, i.e. E1 and E2, in the imaginary part of the dielectric function, it
seems to fail for the description of the higher excited states. This is not surprising
because the higher excited states which are free electrons like are most probably
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Fig. 1. Calculated Imaginary part of the dielectric function of GaAs at the experimen-
tal equilibrium volume both within LDA and shifted by 1.3 eV, compared with the
experimental results of Ref. [39]. The experimental E1 is only slightly underestimated
while E2 is overestimated. Notice that the shifted dielectric function by 1.3 eV, which
produces the correct band gap, overestimates the peak positions by about 0.3 eV.
Excitonic effect should shift these peaks to lower values in agreement with experiment.

well described within LDA and need no scissors-operator shift. This is supported
by the fact that the the energy-loss function, -Imε−1, within the LDA has it
maximum roughly at the free electron plasmon frequency whereas within the
scissors approximation its maximum is shifted to higher energies. For our purpose
the scissors-operator shift remains a good approximation for the description of
the low-lying excited states of semiconductors and their optical properties.

6 Applications

6.1 Optical Properties

We have used our FP-LMTO method and the formalism outlined above to cal-
culate the optical properties of materials [9–12]. In general our results are often
in good agreement with the experimental results. For semiconductors, however,
good agreement with experiment is only achieved when the so called scissors-
operator shift is used. Figure 1 presents our relativistic calculation of the ima-
ginary part of the dielectric function of GaAs compared to the experimental
results of Ref. [39]. The LDA relativistic results underestimates the band gap
by about 1.3 eV. When the imaginary part of the dielectric function is shifted
to higher energies by 1.3 eV the results the E1 and E2 peaks are overestimated
in our calculation. One needs to shift the spectrum by less than the band gap
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as done in Ref. [10] to produce good agreement with experiment. It seems then
that the optical band gap is less than the band energy gap (1.5 eV). The opti-
cal band gap is produced by interband transitions to the low lying conduction
states. Excitonic effects are therefore important and are responsible for the re-
duction of the energy gap of semiconductors. It is interesting to notice though
that the static dielectric function are in good agreement with experiment for
GaAs, Si, and Ge when the shift correspond to the energy band gap obtained
from photoluminescence [6,10].
More interesting are the wide band-gap materials where the LDA calculated

static dielectric function is in good agreement with experiment despite that
the band gap is still underestimated by LDA. Correcting the band gap using
the scissors operator makes the static dielectric much small than the measured
value. As an example of wide gap material, we present in Figure 2 and 3 the
imaginary part of the dielectric function of GaN for the cubic (3) and wurtzite
structure (B4).

Table 1. Calculated static dielectric function ε∞ for GaN compared to pseudopotential
(PP) results and experiment. For the wurtzite structure we have calculated ε

‖
∞ for a

polarization parallel to the xy plan and ε⊥
∞ which is perpendicular.

zinc-blende wurtzite
ε∞ ε

‖
∞ ε⊥

∞
PP 5.74 5.48 5.60
Present work 5.96 5.54 5.65
Expt. 5.35 5.35±0.2

Table 1 shows that our LDA dielectric constant calculations are in agreement
with available experimental results and the pseudo-potential (PP) results [40]
including local-field effects (an error about our calculation is reported in Ref. [40];
our value for ε‖∞ is not 4.48 but 5.54 and the PP value should then be 4.48).
It is interesting to notice that static dielectric is in good agreement for the for
all the nitrides [40] while the band gap is underestimated. The scissors-operator
shift fails to explain the static dielectric function of large gap semiconductor.
Recently, both local-field effects and electron-hole interaction were included on
an ab-initio computation of the dielectric function of few semiconductors [41,42]
by extending the semi-empirical Hanke and coworkers approach [26,43] which is
based on the solution of the Bethe-Salpeter equation [43]. The excitonic effects
seem to improve significantly the agreement between theory and experiment.
However for large band-gap semiconductors, such as diamond, the inclusion of
the excitonic effects seem to underestimate the optical band gap by as much
as 1 eV [42]. It is not clear from these calculations whether the static dielectric
function for wide-band gap semiconductors is improved when excitonic effects are
included. More theoretical work along these lines is needed to fully understand
the dielectric function of wide-gap semiconductors.
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Fig. 2. Calculated imaginary and real parts of the dielectric function of GaN in its
cubic and wurtzite forms. The LDA band gap of the cubic phase is 1.8 eV and the
wurtzite phase is 2.2 eV.

6.2 Magnetic Circular Magnetic Dichroism

X-ray absorption spectroscopy (XAS) probes selectively each core orbital of each
atomic species in a material. Two decades ago the theoretical work of Erskine
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and Stern show that the x-ray absorption could be used to determine the x-ray
magnetic circular dichroism (XMCD) in transition metals when left and right
circularly polarized x-ray beams are used [44]. More recently these ideas were
implemented experimentally and XAS was used to determine the local magnetic
properties of each magnetic atomic orbital in a magnetic compound [45,46]. Thus
the circular magnetic x-ray dichroism is an important tool for the investigation of
magnetic materials [45–56], especially through the use of sum rules for the direct
determination of the local orbital and spin contributions to the total magnetic
moment [50].
Thole and co-workers show that the circular-magnetic-x-ray dichroism is re-

lated to the magnetic moment of the photo-excited atom when the core electron
is excited to the conduction states that are responsible of the magnetic properties
of the material. On the theoretical side, Ebert and his co-workers [51,52] have de-
veloped a fully-relativistic local-spin-density-approximation approach that was
used with success to calculate the XMCD at the K-edge of Fe, the L3-edge of
Gadolinium, and Fe and Co multilayers. Wu et al used slab linear augmented
plane wave method to study the L2,3 XMCD of Fe [56]. Brouder and co-workers
uses Multiple-scattering theory to solve the Schrödinger using spherical poten-
tials and spin-orbit coupling as a perturbation in the final state [53]. Recently
Ankudinov and Rehr used a method based on a non-relativistic treatment of pro-
pagation based on high order multiple scattering theory and spinor-relativistic
Dirac-Fock treatment of the dipole matrix elements to calculate the Fe K edge
and Gd L3 edge XMCD [54].
The calculation of the x-ray absorption for left and right circularly polari-

zed x-ray beams is implemented within the local-density approximation (LDA)
by means of all-electron full-relativistic and spin-polarized full-potential linear
muffin-tin orbital method (LMTO). The core electrons are spin-polarized and
their electronic states are obtained by solving the full-Dirac equation, whereas
for the valence electrons the spin-orbit coupling is added perturbatively to the
the semi-relativistic Hamiltonian. The total Hamiltonian is then solved self-
consistently. To calculate the polarization dependent cross-section we consider
the case where the internal field polarizes the spins along the magnetization easy
axis. With respect to this axis we defined the left- and right-circular polarization,
which correspond to the photon helicity (+�) (−�) respectively and the follo-
wing dipole interaction: ê±p = 1√

2
(∇x ± i∇y). The absorption cross-section µ±

for left (+) and right (−) circular polarized x-ray calculated at the relativistic
j± (�± 1

2 ) core level and in the dipole approximation is given by:

µ±(ω) =
2π
�

∑
mj±

∑
n,k

〈j±mj± |ê±p|nk〉〈nk|pê±|j±mj±〉δ(ω − Enk + Ej±) (34)

using LDA in conjunction with the relativistic full-potential LMTO technique.
Figure 3. represent the K-edge x-ray absorption of Fe, for left and right

circularly polarized light, compared to the experimental results. The agreement
at low energy with experiment is good and start degrading at higher energies
above the mean absorption peak. It is of interest to point out that the magnetic
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Fig. 3. Calculated x-ray absorption at the K-edge of Fe for left and right circularly
polarized light compared to the experimental spectrum. The difference between the two
spectra (barely visible on the graph) represents the x-ray magnetic circular dichroism.

x-ray dichroism at the K-edge which is due to the spin polarization and the spin-
orbit in the final state is very small in the case of Fe. The difference between the
right and left circularly polarization of the light is not even visible on the graph.
However, the x-ray magnetic circular dichroism can be measured and Figure 4
shows a good agreement of the calculated dichroic signal with the experimental
results of Shütz [46].
At the L2,3 edge of 3d transition metals the x-ray magnetic dichroism is

much important because it is meanly due to the presence of the strong spin-
orbit coupling in the initial 2p states (in the case of Fe the spin-orbit splitting
between the 2p3/2 and 2p1/2 is about 13 eV). In Figure 5 we show the calculated
x-ray absorption and XMCD at the Co in PtCo ordered alloy [21].
To compare the results with experiment we have to take into account the ef-

fect of the core hole and the experimental resolution. This is done by convoluting
the calculated spectra by a Lorentzian of widths of 0.9 eV and 1.4 eV for the L2
and L3 edges, respectively, in addition a Gaussian broadening of 0.4 eV is added
to take into account the experimental resolution. The calculation of the x-ray
magnetic circular dichroic signal ignoring the electron-hole recombination effect
provides a semi-quantitative agreement with the experimental spectra. Hence,
we believe that the core hole effect represented here by a Lorentzian broadening
plays a significant role in determining the correct L3/L2 branching ratio for 3d
transition metals. The underestimation of the L2,3 branching ratio remains a
challenge for theorists and further theoretical development along the line pro-
posed by Schwitalla and Ebert [57] is needed to bring the theory at the level of
the experiment.
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Fig. 5. Calculated x-ray absorption and magnetic x-ray dichroism at the L2,3-edge of
Fe compared to the experimental spectrum of Grange et al.[21].

For the 4d-transition metals, the core hole is deeper, and the agreement with
experiment of the XMCD is satisfactory. Figure 6 shows the calculated XMCD
at the site of Pt of the CoPt ordered alloy.
In contrast to what is obtained for Co, the results for the Pt site show a much

better agreement with experiment, due to the fact that the core hole effect is
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Fig. 6. Calculated x-ray magnetic x-ray dichroism at the L2,3-edge of Pt compared to
the experimental spectrum of Grange et al.[21].

less intense (core hole much deeper than that of Co). For the Pt atom we used
both a Lorentzian (1 eV) and a Gaussian (1 eV) to represent the core hole effect
and a Gaussian of 1 eV width for the experimental resolution. The experimental
and theoretical L2 and L3 edges are separated by a spin-orbit splitting of the 2p
core states of 1709 and 1727 eV respectively. The width of both L2 and L3 edges
is comparable to experiment, but the calculated L2 edge is much larger. This
produces a calculated integrated branching ratio of 1.49 which is much smaller
than the experimental ratio of 2.66. Here again the theory is underestimating
the branching ratio.

7 Conclusion

We have reviewed the FP-LMTO method and the implementation of the optical
properties and x-ray magnetic dichroism within the local density approximation.
We have showed that the momentum matrix elements can be evaluated as a
muffin-tin contribution and a surface term. The method has been successfully
used to compute the optical properties of metals [11,12], semiconductors [9,10]
and magneto-optical properties [11] of transition metals alloys, as well as x-ray
magnetic circular dichroism [20–22] with high precision.
For small-gap semiconductors a scissors-operator shift should be used to re-

produce the static and dynamic dielectric function [10]. Excitonic effects seem to
be important in reproducing the correct optical energy gap [41,42]. For wide-gap
semiconductors the local-density approximation (LDA) static dielectric function
is in good agreement with experiment and no scissors-operator shift is required
despite the underestimation of the band gap by LDA [40].
For the computation of the x-ray magnetic circular dichroism the agreement

with experiment is rather good [20–22,51–55]. However, the so called branching
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ratio is underestimated by the theory. More theoretical work where the electron
core-hole interaction is taken into account is needed to bring the theory at the
quality level of experiment [57].
Part of this work was done while one of us (M.A) was at Ohio State University

and were supported by NSF, grant number DMR-9520319. Supercomputer time
was granted by CNUSC (project gem1917) on the IBM SP2 and by the Université
Louis Pasteur de Strasbourg on the SGI O2000 supercomputer.
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Fully Relativistic Band Structure Calculations
for Magnetic Solids – Formalism and Application

H. Ebert

Institut für Phys. Chemie, Univ. München, Butenandtstr. 5-13, D-81377 München

Abstract. Relativistic effects, in particular the spin-orbit coupling, give rise for ma-
gnetic systems to a great number of interesting and technologically important pheno-
mena. The formal and technical aspects of corresponding fully relativistic theoretical
investigations are reviewed. The properties of the underlying Dirac equation, set up
within the framework of density functional theory (DFT) are discussed together with
the Breit-interaction and Brooks’ orbital polarization mechanism. As an example for
a corresponding band structure method, the Korringa-Kohn-Rostoker (KKR) Green’s
function method is adopted. In particular, some technical aspects specific to this tech-
nique are discussed. The numerous applications that will be presented are primarily
meant to demonstrate the many different facets of relativistic – this means in general
– of spin-orbit induced effects in magnetic solids. In addition, these also demonstrate
the tremendous flexibility of band structure schemes based on the Green’s function
formalism.

1 Introduction

Relativistic influences on the electronic properties of solids are known for quite
a long time. One of the most prominent examples for these is the position of the
optical absorption edge of Au. Compared to that of Ag this is higher in energy
giving rise to the characteristic yellow colour of Au [1]. Another example is the
relativistic contraction of s-type electronic shells, that has important consequen-
ces even in chemistry [2]. In the case of Au this leads to the existence of Au−-ions
in the compounds CsAu and RbAu, while corresponding Ag-compounds are not
found. One of the early hints for the importance of spin-orbit coupling for the
electronic band structure of solids stems from X-ray absorption experiments. Na-
mely, it was observed by Cauchois and Manescu [3] that for the L3-absorption
spectrum of Pt there occurs a white line at the absorption edge while none was
found for the L2-edge. Mott [4] ascribed this finding to the spin-orbit coupling,
that should cause the d-states of Pt above the Fermi-energy to have predo-
minantly d5/2-character. As a consequence of this and because of the dipole
selection rules ∆j = 0,±1 on expects strong absorption for the L3-edge but
not for the L2-edge. Another example for the influence of the spin-orbit cou-
pling is supplied by de Haas-van Alphen-experiments on W. Here it was found
that the electron- and hole-surfaces do not touch in the Γ -H-direction, as it was
predicted from non-relativistic band structure calculations [5]. The mentioned
experiments and many others clearly demonstrated the influence of relativistic
effects and that way the need to account for them within a corresponding band
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structure calculation. Nevertheless, it will in general depend on the specific ex-
periment one wants to describe to what extent this has to be done. For example,
in the case of the quadrupolar and magnetic hyperfine interaction, that takes
place in the vicinity of the nucleus where relativistic influences on the electrons
are most pronounced, these will show up even for relatively light elements [6].

For many cases, it is well justified to deal with relativistic effects by introdu-
cing corresponding corrections to the Schrödinger equation. One of the standard
techniques to derive these is to apply a Foldy-Wouthuysen-transformation to re-
move the coupling between the large and small component of the Dirac equation
[7]. Because of technical problems connected with this approach – in particu-
lar its convergence behavior – several alternative schemes have been suggested
that in general also lead to a two-component formalism and that in some cases
are also somewhat problematic. Among these for example the elimination me-
thods [8–14], the Douglas-Kroll-Heß-transformation [15], or the ZORA-scheme
[16] aim to derive an effective Hamiltonian that contains – compared to a non-
relativistic Schrödinger-Hamiltonian – relativistic correction terms. In contrast
to this, Gesztesy et al. worked out an expansion scheme for the corresponding
Green’s function [17,18]. In spite of the obvious differences between the various
schemes mentioned, they nevertheless all lead to the mass-velocity, the Darwin
and the spin-orbit coupling terms [7] as the most important corrections, that
are all proportional to (1/c2). Of course, the explicit expressions supplied by
the various approaches differ to some extent. Nevertheless, one may unambi-
guously call the first two correction terms scalar-relativistic because of their
transformation properties [19]. Most important, these imply that the scalar-
relativistic corrections leave spin as a good quantum number. Accordingly, it
is very simple to include them in a band structure programme that is set up
in a non-relativistic way - even for spin-polarized systems. However, one has to
note that modifying the basic electronic Hamiltonian, one may have to adopt
the expressions for operators representing physical observables [20,21]. The most
prominent example is that for the Fermi-contact part of the magnetic hyperfine
interaction. Inconsistent scalar-relativistic calculations indicated for example for
3d-transition metals relativistic corrections in the order of 40 % [22,23] while
these amount only to about 10 % [24,25]. Another important example in this
context is the electron-photon interaction operator. While this implies the sel-
ection rule ∆ms = 0 for the non-relativistic case, the corresponding relativistic
corrections involve the spin-orbit coupling operator allowing for that reason for
spin-flip optical transitions [21,26–28].

Compared to the scalar-relativistic corrections, accounting for the spin-orbit
coupling within a band structure calculation is much more demanding because
the corresponding correction operator contains explicitly the spin operator. An
efficient way to include its effects within a band structure calculation, that is
based on the variational principle, is to add the matrix of the corresponding
operator to the Hamiltonian matrix in the secular equation [29,30]. For a pa-
ramagnetic system this will increase the time to solve the secular equation by
a factor of 8 because the dimension of the matrices is doubled. This computa-
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tional effort can be reduced to some extent by applying the second variational
technique [31]. Because in both cases the basis functions are set up only in a
non- or scalar-relativistic level, it was often argued that this procedure will lead
to problems if the spin-orbit coupling is very strong. However, recently it could
be demonstrated that one can apply it without problems even to compounds
containing Pb, for which the spin-orbit coupling for the p-states is quite high
[32]. Of course, the most reliable way to deal with all relativistic effects is to
start from the Dirac equation. In fact, for more or less any of the standard band
structure methods corresponding versions have been developed during the last
30 years (for example APW [33], OPW [34], KKR [35,36], ASW [37]). Dealing
with paramagnetic solids these methods do not require more computer time than
accounting for spin-orbit coupling in the variational step, because the dimension
of the Hamiltonian matrix is just the same. In spite of this, the later approach
seems to be much more popular because it allows one to discuss the final results
in familiar terms.

In contrast to the scalar-relativistic corrections, the spin-orbit coupling has
many far-reaching consequences for the qualitative aspects of the electronic
structure. The reason for this is the lowering in symmetry that is caused by
the coupling of the spin and orbital degrees of freedom, that leads – among
others – to a removal of energetic degeneracies. Another consequence of spin-
orbit coupling is the occurrence of physical phenomena, that cannot be described
within a non- or scalar-relativistic framework. A very well-known example for
this is the so-called Fano-effect [38,39], that denotes the finding that one ob-
tains a spin-polarized photo-electron current even for a paramagnetic solid [40]
if one uses circularly polarized light. Of course, the spin polarization gets just
reversed if the helicity of the radiation is reversed. For a magnetic solid, ho-
wever, this symmetry is broken. A direct consequence of this broken symmetry
are the magneto-optical Kerr-effect [41,42] in the visible regime of light and the
circular magnetic X-ray dichroism [42,43] at higher photon energies. Of course,
there are many other phenomena in magnetic solids, that are caused by the com-
mon occurrence of spin-orbit coupling and spin-polarization, as for example the
galvano-magnetic phenomena [44], the magneto-crystalline anisotropy [45], or-
bital contributions to the hyperfine fields and magnetic moments [24] or electric
field gradients in cubic solids [46].

The first band structure calculations aiming to calculate spin-orbit indu-
ced properties in magnetic solids have been done by Callaway and coworkers
[29,26,47]. These authors and later on many other authors [48–56] accounted for
spin-orbit coupling in the variational step with the unperturbed Hamilton ma-
trix describing a spin-polarized system. The basis functions used in this approach
depend only on the orbital angular momentum quantum number l but carry no
information on the spin-orbit coupling. This does not apply to the scheme sug-
gested by the author [57] for which the role of the exchange splitting and the
spin-orbit coupling are interchanged compared to the approach of Callaway and
others. In particular this means that four-component basis functions are used
that are obtained as solutions to the Dirac equation for a spin-averaged poten-
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tial, while the spin-dependent part is accounted for in the variational step. An
alternative way to include the influence of spin-orbit coupling already in the wave
functions has been used by McLaren and Victora [58]. These authors adopted
the formalism suggested by Koellling and Harmon [10] that works with two com-
ponent wave functions in a (l,ml,ms)-representation and that leads to coupled
sets of radial differential equations if the spin-orbit coupling term is included. A
very similar scheme has been used by Akai [59], who restricted the effect of the
spin-orbit coupling to within a spin subsystem keeping spin as a good quantum
number that way. To avoid the numerical effort in solving the coupled set of
radial differential equations, Ankudinov [60] suggested an approximate scheme
that is exact for vanishing spin-orbit coupling or vanishing exchange splitting
and interpolates between these two extreme cases. Because the later three sche-
mes account for spin-orbit coupling and exchange splitting already in calculating
the wave functions, they can be used straightforwardly as a starting point for
multiple scattering theory.

To deal with all relativistic effects and magnetism – at least for transition
metals this means first of all spin polarization – on the same level, it was sugge-
sted already in the 1970s to work on the basis of the appropriate Dirac equation.
Dealing with exchange and correlation within the framework of density functio-
nal theory this leads in a rather natural way to current density functional theory
(CDFT) [61] instead of the conventional spin density functional theory (SDFT)
[62]. However, because of the many unsolved problems connected with this ge-
neral scheme a relativistic version of spin density functional theory has been
suggested [63,64]. Instead of dealing with the resulting Dirac-Hamiltonian for
spin-polarized systems, Richter and Eschrig [65] suggested to use the correspon-
ding squared Dirac Hamiltonian and developed a corresponding spin-polarized
relativistic LCAO-band structure method. The first step to start from the spin-
polarized relativistic Dirac equation itself has been done already 20 years ago
by Doniach and Sommers, who derived the corresponding coupled radial Dirac
equation [66]. The problem has later been investigated in more detail by Feder
et al. [67] and Strange et al. [68]. In particular these authors could present the
first numerical solution to the coupled radial equations for a single potential
well. With this crucial step done, it is possible to derive for any band struc-
ture method its spin-polarized relativistic (SPR) version. This has been done for
example for the KKR [67,68], the LMTO [57,69], and the ASW [70] methods.

In the case of the SPR-KKR the k-space mode based on the variational
principle [71] as well as the multiple scattering mode leading directly to the
Green’s function [24,67,72] has been generalized accordingly. In particular the
later approach (SPR-KKR-GF) was extensively used during the last 10 years.
Some reasons for this are that one does not require Bloch symmetry for the
investigated system and that one can link it straightforwardly to the Coherent
Potential Approximation (CPA) alloy theory [73]. A major drawback of the
SPR-KKR is its numerical effort required for complex systems. This problem
could be overcome for many situations by the development of a TB-version
[74,75] and the use of real space cluster techniques [76–78]. Nearly all SPR-KKR-
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GF calculations performed so far were based on a muffin-tin or atomic sphere
approximation (ASA) construction of the potential. A full-potential version of
it has been worked out by various authors [79–81] and could be implemented
recently in a self-consistent way [82,83]. Although in practice sometimes tedious
because of the complex wave functions, it is possible to investigate more or less
any property of magnetic solids using the SPR-KKR-GF formalism. In particular
it is now one of the standard starting points to deal with magnetic dichroism in
many kinds of electron spectroscopy as for example in X-ray absorption [84,85],
in X-ray fluorescence [86], core-level XPS [87,88], valence band XPS [89], angular
resolved valence band UPS [90], magnetic scattering [91], and the Faraday effect
in the X-ray regime [92].

Most of the benefits supplied by the SPR-KKR-GF method can also be ob-
tained using a corresponding version of the TB-LMTO-method [93–95]. Thus, it
seems for many purposes and situations just a matter of taste which one of the
band structure schemes is used. In the following the SPR-KKR-GF is described
in some detail and a number of applications is used to demonstrate its great
flexibility.

2 Formalism

2.1 Relativistic Density Functional Theory

When dealing with the electronic structure of magnetic solids one usually neglects
the influence of orbital magnetism on it. Accordingly, corresponding band struc-
ture calculations are in general done on the basis of spin density functional theory
(SDFT) as it has been derived among others by von Barth and Hedin [62] in
a non-relativistic way. This framework seems still to be acceptable when rela-
tivistic effects are included by introducing corresponding corrections terms to
the Schrödinger equation. If fully relativistic calculations are performed instead,
in principle a corresponding basis should be adopted to deal with many-body
effects. The first step in this direction has been done by Rajagopal and Calla-
way [61], who derived the SDFT starting from a relativistic level. These authors
demonstrated in particular that quantum electrodynamics supplies the proper
framework for a relativistically consistent density functional theory and derived
the corresponding relativistic Kohn-Sham-Dirac equations [96,97]:[

cα ·
(

�

i
∇ +

e

c
Aeff(r)

)
+ βmc2 + Veff(r)

]
Ψi(r) = εiΨi(r) (1)

with

Veff(r) = −e
[
A0
ext(r) +

1
c

∫
d3r′

J0(r′)
|r − r′| + c

∂Exc[Jµ]
∂J0(r)

]
(2)

Aeff(r) = −e
[
Aext(r) +

1
c

∫
d3r′

J(r′)
|r − r′| + c

∂Exc[Jµ]
∂J(r)

]
. (3)
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Here the Ψi(r) are four-component wave functions (see below) with correspon-
ding single particle energies εi. The matrices αi and β are the standard 4 × 4-
Dirac matrices [7]. The effective scalar and vector potentials, Veff and Aeff , res-
pectively, contain as a first term the corresponding external contributions. The
second terms in Eqs. (2) and (3) are the familiar Hartree potential and the vec-
tor potential due to the Breit-interaction, respectively. Finally, the third terms
are caused by exchange and correlation with the corresponding exchange and
correlation energy Exc[Jµ] being a functional of the electronic four-current Jµ.
This central quantity that determines all properties of the system is given by:

J0 = −ec
∑
i

Ψ †
i Ψi (4)

Jµ = −ec
∑
i

Ψ †
i βα

µΨi , (5)

where J0/c is identical with the familiar electronic charge density ρ, while the
other components Jµ give the spatial components of the electronic current den-
sity j.

Thus, in contrast to non-relativistic SDFT, where the central quantities are
the spin densities n↑(↓) or equivalently the particle density n and spin magne-
tization density m, the relativistic formalism leads in a natural way to a current
density functional theory (CDFT). Because of the problems connected with this
very general scheme an approximate relativistic version of SDFT has been wor-
ked out by several authors [61,63,98–100]. The first step in this direction is the
Gordon decomposition of the spatial current density into its orbital and spin
parts [61,97,101]:

jorb =
1
2m
Ψ †β

[
1
i

←
∇ −1

i
∇ + 2eA

]
Ψ +

1
2m

∇ × Ψ †βσΨ (6)

where σ is the vector of 4 × 4-Pauli matrices [7]. The coupling of the spin part
jspin (the second term in Eq. (6)) to the vector potential Aeff may alternatively
be described by introducing the corresponding spin magnetization density

m = −µB
∑
i

Ψ †
i βσΨi . (7)

This leads to the coupling term

−m · Beff , (8)

with Beff the effective magnetic field corresponding to Aeff . Thus, ignoring the
orbital current density contribution jorb one arrives at a Kohn-Sham-Dirac equa-
tion completely analogous to the non-relativistic SDFT Schrödinger equation
[97,101]: [

�

i
cα · ∇ + βmc2 + Veff(r) + βσ · Beff(r)

]
Ψi(r) = εiΨi(r) (9)

196 H. Ebert



Relativistic Band Structure of Magnetic Solids 197

with

Beff(r) = Bext(r) +
∂Exc[n,m]
∂m(r)

. (10)

This approach has been suggested among others by MacDonald and Vo-
sko [63,98], who justified this simplification by introducing a fictitious magnetic
field that couples only to the spin degree of freedom as reflected by Eq. (9).
This formal justification has been criticized by Xu et al. [102] because descri-
bing a relativistic electronic system in terms of the particle density n and spin
magnetization density m alone the magnetic interaction part connected with
the electronic current density is not Lorentz invariant. This problem could be
circumvented by Rajagopal and coworkers [100,102,103] by considering first the
problem for the rest frame of an electron – for which jorb vanishes – giving a
consistent justification for the use of relativistic SDFT.

The orbital current density contribution to Exc – ignored within SDFT –
has first been considered by Vignale and Rasolt on a non-relativistic level [104–
107]. As one of the central quantities these authors introduce the paramagnetic
orbital current density jorb,p (see below). Because of the restrictions caused by
the demand for gauge invariance this is replaced then by the so-called vorticity:

ν = ∇ × jorb,p(r)
n(r)

. (11)

This step in particular allows to derive a local version of non-relativistic CDFT.
A corresponding explicit expression for the corresponding Exc has been given
for the first time by Vignale and Rasolt [105]:

Exc[n,ν] = Exc[n, 0] +
∫
dx

(
9π
4

)1/3 1
24π2rs

(
χL
χ0L

− 1
)

|ν(x)|2 (12)

where rs = ( 3
4πn )

1/3 and
χL
χ0L

= 1 + 0.02764rs ln rs + 0.01407rs +O(r2s ln rs) (13)

is the ratio of the diamagnetic susceptibility for the interacting and non-interacting
electron gas. Later, more sophisticated expressions for Exc have been given [108].

The Vignale-Rasolt CDFT-formalism can be obtained as the weakly relati-
vistic limit of the fully relativistic SDFT-Dirac equation (1). This property has
been exploited to set up a computational scheme that works in the framework
of non-relativistic CDFT and accounts for the spin-orbit coupling at the same
time [109]. This hybrid scheme deals with the kinematic part of the problem in a
fully relativistic way whereas the exchange-correlation potential terms are trea-
ted consistently to first order in 1/c. In particular, the corresponding modified
Dirac equation[

�

i
cα · ∇ + βmc2 + Veff(r) + βσ · Beff(r) +

∑
σ

βHop,σPσ

]
Ψi(r) = εiΨi(r)

(14)
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incorporates a term

Hop,σ = − i�e

2mc
[Axc,σ(r),∇]+ , (15)

that explicitly represents the coupling of the orbital current and the exchange-
correlation vector potential Axc,σ. Since in the CDFT-formalism of Vignale and
Rasolt Axc,σ is defined in a spin-dependent way, the spin-projection operator
Pσ = 1±βσz

2 appears in addition to Hop,σ in Eq. (14).
Within the above approximate relativistic CDFT scheme the Breit-interac-

tion has been ignored. This radiative correction accounts for the retardation of
the Coulomb-interaction and exchange of transversal photons. A more complete
version than that included in Eq. (1) is given by the Hamiltonian [2,110]:

HBreit =
−e2
2R

α1 · α2 +
e2

2R

[
α1 · α2 − α1 · R̂ α2 · R̂

]
with R = r2 − r1 ,

(16)

where the first part is the magnetic Gaunt part and the second one is the retarda-
tion term. While inclusion of the Breit-interaction within quantum-chemical cal-
culations for atoms and molecules is nearly standard [2], so far only one model
[111] and one fully relativistic [112] calculation have been done in the case of
solids. This is quite astonishing, because the Breit-interaction gives rise to the
so-called shape anisotropy, that contributes in general to the magneto-crystalline
anisotropy energy to the same order of magnitude as the spin-orbit coupling (see
below).

An alternative to the CDFT approach is the heuristic suggestion by Brooks
and coworkers [113–115] to use a k-space method and to add a so-called orbital
polarization (OP) term to the Hamilton matrix. This additional term has been
borrowed from atomic theory and is meant to account for Hund’s second rule, i.e.
to maximize the orbital angular momentum. During the last years, this approach
has been applied with remarkable success to d- as well as f-electron systems
and has been refined by various authors [116,117]. As it could be shown [118],
Brooks’ OP-term can be formulated in a way that can be incorporated into
the Dirac equation allowing that way for a corresponding extension of band
structure methods based on multiple scattering theory [118]. For a d-electron
system, i.e. for the case that orbital magnetism is primarily due to an open
d-electron shell, Brooks’ OP-term takes the form −Bms〈l̂z〉msml δl2. This term
describes a shift in energy for an orbital with quantum numbers l = 2, ml and
ms that is proportional to the average orbital angular momentum 〈lz〉ms

for the
ms-spin subsystem and the so-called Racah parameters Bms

[119] that in turn
can be represented by the Coulomb integrals F 2

ms
and F 4

ms
. An operator that

corresponds to this energy shift is given by

HOP
ms

= −BOP
ms

(r)〈l̂z〉ms l̂z δl2 , (17)

with

BOP
ms

(r) =
2
441

∫
[9
r2<
r3>

− 5
r4<
r5>

] ρdms(r
′)4πr′2 dr′ , (18)
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where ρdms describes the average charge density of a d-electron with spin cha-
racter ms. Obviously the operator HOP

ms
has the form expected within CDFT

for rotational symmetry [105]. This is emphasized by introducing the vector
potential function AOP

ms
= −BOP

ms
(r)〈lz〉 that leads to the Dirac equation:[

�

i
cα · ∇ + βmc2 + Veff(r) + βσ · Beff(r) +AOPβlz

]
Ψi(r) = εiΨi(r) . (19)

For a further discussion of the connection of this equation with CDFT see below.
In addition to the OP-formalism several alternative schemes have been sug-

gested in the past to account within a relativistic band structure calculation
for correlation effects not incorporated within the local approximation to SDFT
(LSDA). For example the LDA+U-scheme has been applied to the compound
CeSb [56], a system that has a maximum Kerr-rotation angle of 90 ◦ [120]. Si-
milar experience has been made for other f-electron systems. Nevertheless, one
should point out that by applying the LDA+U-scheme one leaves the framework
of DFT. This does not apply to the SIC (self-interaction correction) formalism
[96], for which a proper relativistic formulation has been worked out recently
[121,122] and applied to magnetic solids [121].

From the above presentation it is obvious that relativistic effects influence
the electronic structure in a twofold way. On the one hand side, one has the
influence on the electronic kinetics, that is accounted for by working with the
Dirac-formalism. On the other hand, relativity influences the electron-electron
interaction via the retardation effect, the Breit-interaction and so on, leading
to quite pronounced corrections for the exchange and correlation energy Exc
compared to its non-relativistic counterpart. This has been studied in detail for
the paramagnetic and the spin-polarized case for example by MacDonald and
Vosko [63,98], Rajagopal and coworkers [100,102,103] and Engel and coworkers
[123]. Until now, however, only very few investigations have been done on the
importance of these corrections [19,124–126]. Nevertheless, one may conclude
from these few studies that the absolute magnitude of total energies as well as the
binding energies of tightly bound core states is affected in a rather appreciable
way. However, for properties like the equilibrium lattice parameter or even for
magnetic properties no pronounced changes have to be expected. For this reason,
the use of parameterizations derived within non-relativistic SDFT seems to be
well justified.

2.2 Multiple scattering formalism

Solution of the Single Site Dirac Equation The first step to solve one
of the above Dirac-equations for a solid using multiple scattering formalism is
to find the solutions to the corresponding Dirac-equation for an isolated po-
tential well. For that purpose Strange et al. [68] investigated the associated
Lippmann-Schwinger-equation and derived a set of radial differential equati-
ons for the single-site solutions. An alternative scheme has been used by other
authors [66,67] dealing with the problem by writing as a first step the single-
site Dirac equation in spherical coordinates [7]. For the spin-polarized (SDFT)
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case this leads to (for simplicity it is assumed in the following that one has
B(r) = B(r)êz and atomic Rydberg units will be used throughout):[

iγ5σrc
(
∂

∂r
+

1
r

− β

r
K̂

)
+ V + βσzB + (β − 1)

c2

2
− E

]
ψν = 0 . (20)

Here the spin-orbit operator K̂ is defined by

K̂ = β(σ · l + 1) (21)

and the matrices γ5 and σr are given by:

γ5 =
(

0 −I2
−I2 0

)
(22)

and

σr = r̂ · σ , (23)

with σ the vector of the 4 × 4 Pauli matrices [7]. To find solutions to Eq. (20)
one makes the ansatz:

ψν =
∑
Λ

ψΛν , (24)

where the partial waves ψΛν are chosen to have the same form as the linearly
independent solutions for a spherical symmetric potential:

ψΛ(r, E) =
(
gκ(r, E)χΛ(r̂)
ifκ(r, E)χ−Λ(r̂)

)
. (25)

Here the large and small components are composed of the radial wave functions
gκ(r, E) and fκ(r, E) and the spin-angular functions:

χΛ(r̂) =
∑

ms=±1/2

C(l
1
2
j;µ−ms,ms)Y µ−ms

l (r̂)χms , (26)

with the Clebsch-Gordon coefficients C(l 12j;ml,ms), the complex spherical har-
monics Y ml

l and the Pauli-spinors χms . The spin-orbit and magnetic quan-
tum numbers κ and µ, respectively, have been combined to Λ = (κ, µ) and
−Λ = (−κ, µ), respectively. The spin-angular functions χΛ(r̂) are simultaneous
eigenfunctions of the operators j2, jz and K̂ with j = l+ 1

2σ. The corresponding
eigenvalues are j(j+1), µ and −κ and are connected by the following relations:

κ =
{

−l − 1 for j = l + 1/2
+l for j = l − 1/2 (27)

j = |κ| − 1/2 (28)
−j ≤ µ ≤ +j (29)
l̄ = l − Sκ , (30)
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where Sκ = κ/|κ| is the sign of κ and l̄ is the orbital angular momentum quantum
number belonging to χ−Λ.

Inserting the ansatz in Eq. (24) into the single-site Dirac-equation (20) and
integrating over the angles leads to the following set of radial differential equa-
tions:

P ′
Λν = −κ

r
PΛν +

[
E − V
c2

+ 1
]
QΛν +

B

c2

∑
Λ′

〈χ−Λ|σz|χ−Λ′〉QΛ′ν (31)

Q′
Λν =

κ

r
QΛν − [E − V ]PΛν +B

∑
Λ′

〈χΛ|σz|χΛ′〉PΛ′ν , (32)

where the usual notation PΛν = rgΛν and QΛν = crfΛν has been used. The
coupling coefficients occurring here are given by:

〈χΛ|σz|χΛ′〉 = G(κ, κ′, µ) δµµ′ (33)

= δµµ′




− µ
(κ+1/2) for κ = κ′

−
√
1 − ( µ

κ+1/2 )
2 for κ = −κ′ − 1

0 otherwise

. (34)

Because of the properties of G(κ, κ′, µ) only partial waves for the same µ get
coupled; i.e. µ is still a good quantum number. In addition, one can see that for
the orbital angular momentum quantum numbers l and l′ of two coupled partial
waves one has the restriction l−l′ = 0,±2, . . . , i.e. only waves of the same parity
are coupled. Nevertheless, this still implies that an infinite number of partial
waves are coupled. In practice, however, all coupling terms for which l− l′ = ±2
are ignored. A justification for this restriction has been given by Feder et al.
[67] and Cortona et al. [127]. Results of numerical studies furthermore justify
this simplification [128,129]. Altogether, this restricts the number of terms in
Eqs. (31) and (32) to 2 if |µ| < j. For the case µ = j, there is no coupling at all;
i.e. the solutions ψν have pure spin-angular character Λ.

The procedure sketched above to derive, starting from the SDFT-Dirac equa-
tion, the corresponding set of coupled radial differential equations can be used
straightforwardly for more complex situations. In the case of the formally rather
simple Brooks’ OP-formalism one has the additional term HOP

ms
(see Eq. (17))

leading to the radial equations:

P ′
Λν = −κ

r
PΛν +

[
E − V
c2

+ 1
]
QΛν +

B

c2

∑
Λ′

〈χ−Λ|σz|χ−Λ′〉QΛ′ν (35)

− 1
c2

∑
Λ′

〈χ−Λ|AOPlz|χ−Λ′〉QΛ′

Q′
Λν =

κ

r
QΛν − [E − V ]PΛν +B

∑
Λ′

〈χΛ|σz|χΛ′〉PΛ′ν (36)

−
∑
Λ′

〈χΛ|AOPlz|χΛ′〉PΛ′ .
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Formally, the term HOP
ms

can be seen to represent the coupling of the electronic
orbital current to a vector potential A. A more general form of such a vector
potential is encountered for example when one is including the Breit interaction
in the Dirac equation. To deal with such a situation, it is most convenient to
represent the vectors within the scalar product α·A (see Eq. (1)) using spherical
coordinates and to expand the spatial dependency of the components of the
vector potential A in terms of complex spherical harmonics:

α · A =
∑
m

αmi
∑
LM

AmLM (r)Y −m
L (r̂) . (37)

When added to the SDFT-Dirac-Hamiltonian this leads to the following radial
equations [112]:

P ′
Λν = −κ

r
PΛν +

[
E − V
c2

+ 1
]
QΛν +

B

c2

∑
Λ′

〈χ−Λ|σz|χ−Λ′〉QΛ′ν (38)

−1
c

∑
Λ′

∑
LMm

AmLM 〈χ−Λ|YML σm|χΛ′〉PΛ′

Q′
Λν =

κ

r
QΛν − [E − V ]PΛν +B

∑
Λ′

〈χΛ|σz|χΛ′〉PΛ′ν (39)

−1
c

∑
Λ′

∑
LMm

AmLM 〈χΛ|YML σm|χ−Λ′〉QΛ′ .

The Dirac equation Eq. (14) set up within the framework of CDFT can
be treated in a completely analogous way resulting in a similar set of radial
differential equations for large and small component wave functions.

Because of the high symmetry of the orbital polarization Hamiltonian HOP
ms

no
coupling between partial waves beyond that caused by the spin-dependent part of
the SDFT-Dirac-Hamiltonian is introduced. This holds also if a vector potential
term is added to the Hamiltonian that stems from the Breit-interaction or from
the CDFT-formalism, as long as one imposes for this rotational symmetry, with
the symmetry axes coinciding with the direction of the magnetization.

The problem of deriving a full-potential (FP) version of the KKR-formalism
has been discussed in a rather controversial way during the last decades. Now,
it is generally accepted that the scheme proposed among others by Dederichs,
Zeller and coworkers [130,131] supplies a sound basis for FP-KKR band struc-
ture calculations. This implies that in a first step space is subdivided into non-
overlapping, space-filling polyhedra usually obtained by means of the Wigner-
Seitz-construction. The shape of these Wigner-Seitz cells is represented by the
so called shape functions ΘL(r) [132] with

ΘWS(r) =
∑
L

θL(r)YL(r̂) , (40)
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where the step function ΘWS is 1 for r within the cell and 0 otherwise. The
functions YL are real spherical harmonics with L standing for (l,m). In addi-
tion one defines the radius rcr of the smallest circumscribed sphere, for which
ΘWS(r) = 0 for r > rcr. Multiplying the potential V of the extended system in
Eq. (9) with the function ΘWS(r) centered at an atomic site n leads to the single
site problem. To solve the corresponding single site Dirac equation the same an-
satz as given in Eqs. (24) and (25) is made. This leads now to the coupled radial
Dirac equations:

P ′
Λ = −κ

r
PΛ +

[
E

c2
+ 1
]
QΛ − 1

c2

∑
Λ′
V −
ΛΛ′QΛ′ (41)

Q′
Λ =

κ

r
QΛ − EPΛ +

∑
Λ′
V +
ΛΛ′PΛ′ . (42)

Here the underlying Dirac-Hamiltonian has been restricted to the SDFT-form
with the corresponding potential matrix elements V ±

ΛΛ′ defined by

V ±
ΛΛ′(r) = 〈χ±Λ|Veff ± σB|χ±Λ′〉 . (43)

These are straightforwardly evaluated by expanding the potential into real sphe-
rical harmonics:

V (r) =
∑
L

VL(r)YL(r̂) (44)

B(r) =
∑
L

BL(r)YL(r̂) (45)

with B(r) = B(r)B̂ .

Here it has been assumed that B(r) points everywhere along the same direction
B̂. In the following applications B̂ will be oriented along the z-axis. However,
these are no necessary restrictions for the formalism; i.e. treatment of other
orientations or non-collinear magnetic states can be straightforwardly accounted
for.

Compared to a muffin-tin or atomic sphere approximation potential con-
struction inclusion of non-spherical terms in V and B obviously leads to further
coupling. In practice, however, the number of coupled partial waves is restricted
to 2(lmax + 1)2 by fixing an upper limit lmax for the angular momentum expan-
sion of the wave function in Eq. (24). For example, for lmax = 2 one may have up
to 18 partial waves coupled; i.e., one has to solve up to 36 coupled equations for
the functions PΛ and QΛ. However, for a cubic system with B̂ = ẑ and lmax = 2
one has at most 3 partial waves coupled due to the high symmetry of the system.

Single-site t-matrix and Normalization of the Wave Functions Working
with one of the above versions of the Dirac equation and using the corresponding
coupled radial differential equations a set of 2(lmax + 1)2 linearly independent
regular solutions ΦΛ can be created by initializing the outward integration with
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a selected spin-angular character Λ dominating close to the nucleus; i.e. one
demands that:

ΦΛ(r, E) =
∑
Λ′
ΦΛ′Λ(r, E)

r→0−→ ΦΛΛ(r, E) . (46)

After having solved all systems of coupled equations for the wave functions
ΦΛ one gets the corresponding single site t-matrix by introducing the auxiliary
matrices a and b [133–135]:

aΛΛ′(E) = −ipr2[h−
Λ(pr), ΦΛΛ′(r, E)]r (47)

bΛΛ′(E) = ipr2[h+Λ(pr), ΦΛΛ′(r, E)]r . (48)

Here p =
√
E(1 + E/c2) is the relativistic momentum [7] and [. . . ]r denotes the

relativistic form of the Wronskian [135]:

[h+Λ , φΛΛ′ ]r = h+l cfΛΛ′ − p

1 + E/c2
Sκh

+
l̄
gΛΛ′ . (49)

The functions h±
Λ are the relativistic version of the Hankel functions of the

first and second kind [7]:

h±
Λ(pr) =

√
1 + E/c2

c2

(
h±
l (pr)χΛ(r̂)

ipcSκ

E+c2 h
±
l̄
(pr)χΛ̄(r̂)

)
. (50)

Evaluating all functions in Eqs. (47) – (48) at rb = rmt, rWS or rcr, resp., i.e.
the muffin-tin, the Wigner-Seitz or the critical radius depending on whether one
is using the muffin-tin, the ASA- or full-potential mode, one finally has [135]:

t(E) =
i

2p
(a(E) − b(E))b−1(E) . (51)

By a superposition of the wave functions ΦΛ according to the boundary condi-
tions

ZΛ(r, E) =
∑
Λ′
ZΛ′Λ(r, E)

r>rb−→
∑
Λ′
jΛ′(r, E)t(E)−1

Λ′Λ − iph+Λ(r, E) (52)

one gets an alternative set of linearly independent regular solutions ZΛ to the
single site Dirac equation. These functions are normalized in analogy to non-
relativistic multiple scattering theory according to the convention of Faulkner
and Stocks [10] and allow straightforwardly to set up the electronic Green’s
function (see below). The additionally needed irregular solutions JΛ are fixed by
the boundary condition

JΛ(r, E)
r→rb−→ jΛ(r, E) (53)

and are obtained just by inward integration. The functions jΛ occurring in Eqs.
(52) – (53) are the relativistic counterpart to the spherical Bessel functions
defined in analogy to Eq. (50) for h±

Λ [7].
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Manipulation of the SDFT-Dirac-Hamiltonian Dealing with relativistic
effects by adding corresponding corrections to the Schrödinger equation allows
one straightforwardly to investigate the role of these corrections individually.
For the fully relativistic Dirac formalism sketched above this is obviously not
the case. The only way to monitor the importance of all relativistic effects in
a consistent way is to manipulate them simultaneously by scaling the speed of
light c. To allow in spite of this for a separate investigation of the role of scalar-
relativistic effects and the spin-orbit coupling an elimination scheme has been
applied recently to the SDFT-Dirac Hamiltonian.

Using this procedure an equation for the large component wave function
φ(r, E) can be introduced that is still exact [137,138]:[

− 1
r2
∂

∂r
r2
∂

∂r
+
l̂ 2

r2
− SΛT + SΛBσz

+
S′
Λ

SΛ

(
d
dr

− 1
r

− K̂ − 1
r

)]
φ(r, E) = 0 . (54)

Here the abbreviations

T = E − V (55)

SΛ =
E − V
c2

+ 1 +
B

c2
〈χ−Λ|σz|χ−Λ〉 (56)

have been used, where SΛ would be identical to 1 in the non-relativistic limit
which is obtained for c → ∞.

For the wave function φ(r, E) the ansatz

φ(r, E) =
∑
Λ

φΛ(r, E) =
∑
Λ

gΛ(r, E)χΛ(r̂) , (57)

is made in accordance with the adopted Λ-representation. Inserting this ansatz
into the wave equation (54) leads to the following second order radial differential
equation:

P ′′
Λ =

l (l + 1)
r2

PΛ − SΛ TPΛ + SΛ
∑
Λ′
BΛΛ′ PΛ′

+
S′
Λ

SΛ

[
d
dr

− 1
r

]
PΛ +

S′
Λ

SΛ

1
r

∑
Λ′
ξΛΛ′ PΛ′ (58)

with the spin-orbit coupling operator K̂ replaced using the operator

ξ̂ = K̂ − 1 = σ · l . (59)

Inserting the proper values for the corresponding angular matrix elements

ξΛΛ′ = 〈χΛ|K̂ − 1|χΛ′〉 = (−κ− 1)δΛΛ′ , (60)
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the exact second order differential equation for the major component is reco-
vered.

Replacing the spin-orbit coupling operator K̂ in Eqs. (59) and (60) by its
scaled counterpart

K̂x = 1 + xσ · l (61)

with the associated effective spin-orbit quantum number

κx = −1 + x (1 + κ) , (62)

allows one to scale the strength of the spin-orbit coupling separately. Obviously,
setting x = 1 nothing changes at all, while for x = 0 one gets κx = −1. This
is just the value of the spin-orbit quantum number for s-states where there is
no spin-orbit coupling. Therefore, replacing κ in Eq. (60) by κx switches the
spin-orbit coupling off for any partial wave if x = 0 and reduces or increases the
spin-orbit coupling strength else.

To solve the resulting second order differential equation Eq. (58) for the wave
functions PΛ(r, E) the auxiliary function QΛ(r, E) is introduced by the definition

QΛ =
[
P ′
Λ +

κx
r
PΛ

] 1
SΛ

. (63)

This leads after some simple transformations to a coupled set of first order
differential equations:

P ′
Λ = −κx

r
PΛ + SΛQΛ (64)

Q′
Λ =

κx
r
QΛ − TPΛ +

∑
Λ′
BΛΛ′ PΛ′ +

l (l + 1) − κx(κx + 1)
r2

1
SΛ
PΛ . (65)

Apart from allowing one to manipulate the strength of the spin-orbit cou-
pling, Eq. (58) also permits to modify the form of the spin-orbit coupling ope-
rator. For this purpose ξ̂ is splited according to

ξ̂ = σ · l

= σzlz + (σxlx + σyly) (66)

= ξ̂zz + ξ̂xy

into two parts. The first term, ξ̂zz, gives rise only to a splitting of levels with
different quantum numbers ml. Because no mixing of states with different spin
character is introduced that way, ms is left as a good quantum number. In
contrast to this, the second term, ξ̂xy, gives rise to a hybridization of different
spin states while no obvious splitting of ml-levels is caused by it. Because the
two parts of ξ̂ have quite different consequences it is interesting to investigate
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their effect separately by replacing ξ̂ in Eq. (58) either by ξ̂zz or by ξ̂xy. The
corresponding angular matrix elements to be inserted are

〈χΛ|ξ̂zz|χΛ′〉 = δll′δµµ′

{
−µ
√
1 −
(

2µ
2l+1

)2
for κ �= κ′

−Sκ 2µ2

2l+1 − 1
2 for κ = κ′

(67)

〈χΛ|ξ̂xy|χΛ′〉 = δll′δµµ′

{
+µ

√
1 −
(

2µ
2l+1

)2
for κ �= κ′

−κ+ Sκ 2µ2

2l+1 − 1
2 for κ = κ′ .

(68)

A solution of the resulting second order differential equation for the two different
cases can again be achieved by introducing the auxiliary function QΛ in Eq. (63).
This leads to the following sets of coupled first order differential equations:

P ′
Λ = −κ

r
PΛ + SΛQΛ (69)

Q′
Λ =

κ

r
QΛ − TPΛ +

∑
Λ′
BΛΛ′ PΛ′

− S′
Λ

SΛ

1
r

[
(κ+ 1)PΛ +

∑
Λ′
ξλΛΛ′ PΛ′

]
, (70)

with ξλΛΛ′ = 〈χΛ|ξ̂zz|χΛ′〉 or ξλΛΛ′ = 〈χΛ|ξ̂xy|χΛ′〉, respectively.
The final coupled radial equations obtained for the two manipulation schemes

sketched above differ only with respect to the last term in Eqs. (65) and (70),
respectively, from the original equation (31) for their small component wave
function corresponding to the proper SDFT-Dirac-Hamiltonian. Implementation
of the two manipulation schemes therefore requires only minor modifications in
the corresponding programs.

However, one has to keep in mind that QΛ(r, E) defined by Eq. (63) has not
the meaning of a small component occurring within the bi-spinor formalism. For
this reason the boundary conditions to match the wave functions to solutions
outside the sphere boundary have to be specified by PΛ(r, E) alone [57]. To
set up the corresponding single site t-matrix tΛΛ′(E) used within the KKR-
formalism one therefore has to replace the relativistic Wronskian (see Ref. [135])
by its standard form gΛ(r, E)j′l(r, E)−g′

Λ(r, E)jl(r, E) with jl(r, E) the spherical
Bessel function. Furthermore, one has to note that for the evaluation of the
matrix elements of any operator it has to be transformed in such a way that no
coupling of large and small component occurs. This applies, for example, to the
operator α ·A that describe the interaction of electrons with the vector potential
A. In this case, for example, the ∇ · A-form of the matrix elements can be used
[42,139].

Green’s function The problem of setting up the electronic Green’s function
G(r, r ′E) for a solid on the basis of relativistic multiple scattering theory for
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arbitrary scalar and vector potentials has been investigated in great detail by
Tamura [79]. In analogy to the non-relativistic formalism of Faulkner and Stocks
[10] the Green’s function G(r, r ′, E) can be written as:

G(r, r ′, E) =
∑
ΛΛ′

ZnΛ(r, E)τ
nn′
ΛΛ′(E)Zn

′×
Λ′ (r ′, E)

−
∑
Λ

[
ZnΛ(r, E)J

n×
Λ (r ′, E)Θ(r′ − r)

+JnΛ(r, E)Z
n×
Λ (r ′, E)Θ(r − r′)

]
δnn′ (71)

for r (r ′) within the cell n (n′). Here the quantity τnn
′

ΛΛ′(E) is the so-called scat-
tering path operator [140] that represents all multiple scattering events in a
many-atom system in a consistent way (see below). The wave functions ZnΛ and
JnΛ are the properly normalized regular and irregular solutions of the correspon-
ding single site problem for site n (see above).

The most important technical point to note is that in Eq. (71) the sign ”×”
indicates that the wave functions Z× and J× are the left-hand side regular and
irregular solutions of the corresponding modified Dirac equation [79]. Fortuna-
tely, for the SDFT-Dirac-Hamiltonian these are obtained from the same radial
differential equations as the conventional right-hand side solutions ZΛ and JΛ;
i.e. from Eqs. (41)-(42) with the potential matrix elements V ±

ΛΛ′ replaced by V ±
Λ′Λ.

For highly symmetric systems one may have the situation that V ±
ΛΛ′ = V ±

Λ′Λ. In
this case Z× and J× are obtained from Z and J by simple complex conjugation
and transposition:

Z×
Λ (r, E) =

∑
Λ′

(gΛ′Λ(r, E)χ
†
Λ′(r̂);−ifΛ′Λ(r, E)χ

†
Λ̄′) (72)

and

J×
Λ (r, E) =

∑
Λ′

(g̃Λ′Λ(r, E)χ
†
Λ′(r̂);−if̃Λ′Λ(r, E)χ

†
Λ̄′) , (73)

since left and right hand side solutions are identical with respect to their ra-
dial parts. This applies in particular to the single site problem with spherically
symmetric potential terms V and B, but also to cubic systems with the magne-
tization along the z-axis, as investigated here. Fortunately, this is still true if the
OP-term is included in the Dirac equation (19) because here the relation (Eq.
(11) in [79]) for the vector potential corresponding to the OP-potential term in
Eq. (19) holds.

Calculation of the Scattering Path Operator τnn′
ΛΛ′ The scattering path

operator τnn
′

ΛΛ′ – introduced by Gyorffy and Stott [140] – transfers a wave with
spin-angular character Λ′ coming in at site n′ into a wave outgoing from site n
with character Λ and with all possible scattering events that may take place in
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between accounted for. According to this definition it has to fulfill the following
self-consistency condition:

τnn
′
= tnδnn′ + tn

∑
k �=n

Gnkτkn
′
, (74)

where all quantities are energy dependent and the underline denotes matrices
with their elements labeled by Λ = (κ, µ). Here the single site t-matrix tn is
fixed by the solutions to the single-site Dirac equation for site n. Furthermore,
Gnn

′
is the relativistic real space Green’s function or structure constants matrix

that represents the propagation of a free electron between sites n and n′ [133]. It
is related to its non-relativistic counterparts Gnn

′
LL′ = Gnn

′
LL′δmsm′

s
by the simple

relation [80]:

Gnn
′

ΛΛ′ = (1 + E/c2)
∑
LL′

S+ΛLG
nn′
LL′SL′Λ′ , (75)

where L and L stand as usual for the sets (l,ml,ms) and (l,ml), resp., of non-
relativistic quantum numbers. The matrix elements of the unitary transforma-
tion matrix S occurring in Eq. (75) are given by the Clebsch Gordon coefficients
C(l 12j, µ−ms,ms) [7].

For many situations it is often sufficient to consider a system consisting of
only a finite number of atoms, as for example within the local interaction zone
(LIZ) formalism [78] or EXAFS-theory [76,77]. In that case Eq. (74) can be
solved by inverting the corresponding real-space KKR-matrix [77]:

τ = [m−G]−1 , (76)

where the double underline indicates super-matrices with the elements being
labeled by the site indices of the cluster. The elements themselves are matrices
labeled by Λ as for example (G)nn

′
= Gnn

′
with (Gnn

′
)ΛΛ′ = Gnn

′
ΛΛ′ . The matrix

m in Eq. (76) is site-diagonal and has the inverse of the single site t-matrix tn

as its diagonal elements; i.e. (m)nn
′
= mnδnn′ = (tn)−1δnn′ .

Alternatively one may instert Eq. (74) repeatedly into itself to arrive at the
scattering path expansion

τnn = tn + tn
∑
k �=n

GnktkGkntn

+ tn
∑
k �=n

∑
l �=k

GnktkGkltlGlntn + ... (77)

for the site-diagonal scattering path operator τnn. Compared to the matrix in-
version the scattering path expansion technique is highly efficient. On the other
hand, one may encounter convergence problems using it. To avoid these problems
several alternative and efficient schemes have been suggested in the literature
[141,142] that have not been applied so far for relativistic calculations.
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For ordered infinite systems Eq. (74) can be solved exactly by means of
Fourier-transformation. For one atom per unit cell, the term τnmΛΛ′ is obtained
from the Brillouin-zone integral

τnn
′

ΛΛ′(E) =
1
ΩBZ

∫
ΩBZ

d3k[t−1(E) −G(k, E)]−1
ΛΛ′e

ik(Rn−Rn′ ) . (78)

Here Rn(n′) denotes the lattice vector for site n(n′) and the relativistic k-
dependent structure constant matrix G(k, E) is connected to its non-relativistic
counterpart in analogy to Eq. (75) for the real space formulation.

As usual, group theory can be exploited to restrict the integration in Eq. (78)
to the irreducible part of the Brillouin-zone, that depends on the orientation of
the magnetization [143,144]. For cubic systems, the site-diagonal case n = n′ has
been dealt with in detail by Hörmandinger and Weinberger [145], while the site-
off-diagonal case n �= n′ has been worked out by Zecha and Kornherr [146,147].

To deal with the electronic structure of surfaces within the framework of the
spin-polarized relativistic KKR-formalism, the standard layer techniques used for
LEED and photoemission investigations [148] have been generalized by several
authors [90,149]. As an alternative to this, Szunyogh and coworkers introduced
the TB-version of the KKR-method [74,150,75]. To invert the emerging layer-,
k‖- and Λ-indexed KKR-matrix, that has in principle an infinite number of rows
and columns, these authors applied techniques that are also used within the TB-
LMTO-Green’s function formalism [95]. Finally, the scheme to deal with surfaces
and layered systems developed by Dederichs and coworkers [151], that represents
the vacuum region by layers of empty atomic sites, has been generalized recently
by Huhne and Nonas [152,153].

Treatment of Disordered Alloys One of the appealing features of the mul-
tiple scattering formalism described above is that it can be applied straightfor-
wardly to deal with disordered alloys. Within the Coherent Potential Approxi-
mation (CPA) [154] alloy theory the configurationally averaged properties of a
disordered alloy are represented by a hypothetical ordered CPA-medium, which
in turn may be described by a corresponding scattering path operator τnn,CPAΛΛ′ .
This operator is determined by the CPA-condition:

xAτ
nn,A + xBτnn,B = τnn,CPA , (79)

where the matrices are defined with respect to the index Λ and the binary alloy
system has components A and B at relative concentrations xA and xB, respec-
tively. The above equation represents the requirement that the concentration-
weighted sum of the component-projected scattering path operators τnn,α should
be identical to that of the CPA-medium; i.e. embedding an A- or a B-atom into
the CPA-medium should not cause any additional scattering.

The τnn,α describes the scattering properties of an α-atom embedded in the
CPA-medium, i.e. of a substitutional impurity and is given by the expression

τnn,α = τnn,CPA
[
1 +
(
t−1
α − t−1

CPA

)
τnn,CPA

]−1
, (80)
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where tα and tCPA are the single site t-matrices of the component α and of the
CPA-medium, respectively. The later quantity is connected with the CPA scat-
tering path operator by an equation analogous to Eq. (78) or (76), respectively.
To obtain the quantities tCPA and τnn,CPA, for given concentrations xα, one
must solve Eqs. (79), (80) and (78) or (76), respectively, iteratively.

3 Applications

3.1 Basic Electronic Properties

Dispersion relations The impact of the spin-orbit coupling on the dispersion
relations Ej(k) of spin polarized relativistic solids have been investigated by
several authors in the past [71,138,155]. Corresponding results for fcc-Ni are
shown in Fig. 1 for the magnetization M along the [001]-axis and the wave-
vector k along the [100]-axis [138]. As one notes, spin-orbit coupling gives rise to
a lifting of degeneracies (e.g. at A and B in Fig. 1, left) and causes hybridization
or mixing of bands (e.g. at C, D, E and F) that simply cross within a non- or
scalar relativistic treatment. In addition, one finds that for Bloch states |Ψjk〉 the
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Fig. 1. Dispersion relation Ej(k) of fcc-Ni for the magnetization M and the wave-
vector k along the [001]- and [100]-axis, respectively. The panels show from left to the
right results based on the full Dirac equation and those obtained keeping the zz- and
xy-terms in Eq. (66).

expectation value 〈Ψjk|σz|Ψjk〉 is not restricted to ±1 (see e.g. Ref. [65,71]), i.e.
spin is no more a good quantum number. However, remarkable deviations from
the values ±1 occur only in the region where bands cross if spin-orbit coupling
is neglected. For this reason it is justified to attach the labels ↓ and ↑ to the
bands to indicate their dominant spin character for a certain range of k.

Keeping only the ξ̂zz-part of the spin-orbit interaction the most important
consequence is that now all states have pure spin character that cannot change if
one goes along a certain band. However, this does not rule out the hybridization
of bands induced by ξ̂zz. As one can see from the middle panel of Fig. 1 hybri-
dization takes place at E and F. On the other hand, no hybridization is found
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at C and D, where now bands of different spin character cross. Furthermore one
notes that the splitting of the bands, e.g. at A, B, E and F caused by the ξ̂zz-part
is quite comparable to that due to the full spin-orbit interaction.

Concerning the hybridization, the situation is more or less opposite to the
situation for ξ̂zz, if the ξ̂xy-part is used. The right panel of Fig. 1 demonstrates
that there is now a pronounced hybridization of bands of different spin character
(C and D) – just as for the full spin-orbit interaction. While hybridization is also
present at E and F, it is much less pronounced than for ξ̂zz. Surprisingly, the
splitting of the bands caused by ξ̂xy, while being in general smaller than for
ξ̂zz, is still quite appreciable. In spite of this, both parts have a rather different
importance for many spin-orbit induced properties, as it will be demonstrated
below.

The influence of the spin-orbit coupling on the dispersion relation of ordered
spin-polarized solids shown in Fig. 1 can also be demonstrated for disordered
ones. Instead via the dispersion relation, the band structure is represented in
the later case by means of the Bloch-spectral function AB(k, EF) that can be
viewed as a k-dependent density of states (DOS) function [156]. Due to the
chemical disorder, AB(k, EF) for a given energy is in general spread out in k-
space, implying that the wave vector k is not a good quantum number. For an
ordered system, on the other hand, the smearing out in k-space does not occur
and AB(k, EF) can be written as a superposition of δ-functions δ(E − Ej(k))
and the conventional dispersion relations are recovered.

Fig. 2 shows results for spin-projected Bloch-spectral function AB(k, EF)
obtained for fcc-Fe0.2Ni0.8 for the Fermi energy EF, the wave vector k in the
(010)-plane and the magnetization M along the [001]-direction [157]. As one
notes, disorder has quite a different impact on the majority and minority spin
Bloch-spectral functions. Nevertheless, there is a well-defined Fermi surface for
both of them that – due to the specific composition – is very similar to that of
pure Ni [26,158]. Comparing the details of the Bloch-spectral function for the
two spin sub-systems a hybridization is recognized. This especially holds for the
single majority sheet centered at the Γ -point that has a pronounced minority
spin admixture. Because the majority spin states primarily carry the electric
current [159] and because the spin hybridization leads effectively to a short-cut
it should have a great influence on the electric resistivity. In fact, calculations
of the isotropic residual resistivity of magnetic alloys using the SPR-KKR-CPA
give always higher values than calculations that neglect spin-orbit coupling and
make use of the so-called two-current model [160,161].

In addition to the spin hybridization, one notes a small anisotropy of the
Bloch spectral function; i.e. it depends on the relative orientation of the wave
vector k and the magnetization M . This applies not only to the location of
AB(k, E) in k-space, but also for the width of the Bloch spectral function.
The former property is also found for the dispersion relation of ordered sy-
stems and clearly indicates the lowered symmetry of the system compared to a
paramagnetic state. For the situation considered in Figs. 1 and 2 the symmetry
is effectively tetragonal instead of being cubic. Changing the orientation of the
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Fig. 2. Gray-scale representation of the Bloch spectral function AB(k, EF) for fcc-
Fe0.2Ni0.8 for the energy fixed to the Fermi energy EF and the magnetizationM ‖ [001].
The wave vector k is in the (010)-plane; i.e. the horizontal axis gives the component
of k perpendicular to M , while the vertical axis gives that parallel to M . The white
background corresponds to AB(k, E) = 0, while the black regions represent AB(k, E) ≥
50 a.u.; i.e. the cusps of AB(k, E) have been cut for a more resolved representation. The
left and right parts give the Bloch spectral function decomposed into their minority
and majority spin part, respectively.

magnetization M will in general change the symmetry but also the electronic
structure itself. The corresponding changes in the total energy give rise to the
magneto-striction [162,163] and the magneto-crystalline anisotropy [164,165].
The conventional approach to evaluate magneto-crystalline anisotropy energies
is to apply the force theorem [166], that allows to approximate the energy dif-
ference for two orientations of the magnetization as the energy difference of the
corresponding single particle energies. This means that the small changes found
for the dispersion relation when the magnetization is rotated [155,158] are the
microscopic origin of the magneto-crystalline anisotropy. In practice the mentio-
ned energy differences are calculated by integrating the various energy-weighted
density of states curves or equivalently the integral DOS curves up to a fixed
Fermi energy. On the basis of this procedure Újfalussy et al. performed for multi-
layer systems a layer-wise decomposition of the magneto-crystalline anisotropy
energy by using corresponding layer projected DOS functions [167]. Of course, an
analogous composition can be made for any multi-component system. Using the
KKR-formalism an elegant way to perform the above mentioned energy-integral
for the integrated DOS function is to make use of Lloyd’s formula [168]. This
has recently been used for a calculation of the magneto-crystalline anisotropy
energy of disordered fcc-CoxPt1−x alloys by Razee et al. [169] who also worked
out corrections to the expression based on the force theorem.

Finally, it should be emphasized that all calculations of the magneto-crystalline
anisotropy energy done so far on the basis of the force theorem or alternative
schemes [164,165] account only for the spin-orbit coupling as its microscopic
source. The Breit interaction, that gives rise to contributions in the same order
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of magnitude, is usually accounted for only in a second step by calculating the
so-called shape anisotropy energy [165,170,171].

Charge and Orbital Current Density Distribution For a paramagnetic
solid time reversal symmetry implies that spin-orbit coupling viewed as a pertur-
bation leads for states with quantum numbers (ml,ms) to the same changes as
for (−ml,−ms). As a consequence the spatial symmetry of the charge distribu-
tion is not affected and no orbital current is induced. For a spin-polarized solid,
on the other hand, this does not hold anymore; i.e. states with quantum numbers
(ml,ms) and (−ml,−ms) are affected by the inclusion of the spin-orbit coupling
in a different manner because of the exchange splitting. As a consequence the
charge distribution will be rearranged according to the lowered symmetry of the
system compared to its paramagnetic state. For a magnetic solid with a cubic
lattice and the magnetization along the z-axis, for example, the effective symme-
try is only tetragonal. Accordingly, self-consistent full-potential spin polarized
relativistic calculations lead to non-cubic terms like ρ20 and V20, respectively,
if for the charge density ρ and the potential V the conventional expansion into
spherical harmonics is used [83] (see Eq. (44)).

A further consequence of the presence of the spin-orbit coupling for a spin-
polarized solid is that its orbital angular momentum is no more quenched. This
corresponds to the occurrence of a finite paramagnetic orbital current density
jp (the adjective paramagnetic can be omitted in the following because external
magnetic fields are assumed to be absent; i.e. the physical and paramagnetic
current densities are identical).

Within the Green’s function formalism used here the current density jp can
be obtained from the expression

jp = − 1
π
Trace�

EF∫
dE

1
i
[
→
∇ −

←
∇]G(r, r ′, E)|r=r ′ . (81)

Corresponding results [83] obtained for the current density jp in bcc-Fe are
shown in Fig. 3. Here the direction and magnitude of jp is represented by arrows
for the (001)-plane with the z- and magnetization axes pointing upwards. At first
sight the current density distribution seems to be rotational symmetric. However,
a closer look reveals that it has in fact a lower symmetry. This is demonstrated
in the right part of Fig. 3 which gives the radial component of jp within the
(001)-plane. This component is about 2-3 orders of magnitude smaller than jp
itself and has been scaled by a factor of approximately 350 with respect to the
left part of Fig. 3. As one notes, there is only a four-fold symmetry axis along
the z-axis. For the paramagnetic state the x- and y-axes as well as the diagonal
axes in between would be twofold symmetry axes. Obviously, the corresponding
symmetry operation C2 is missing here because of the ferromagnetic state and the
spin-orbit coupling accounted for. However, one can also clearly see from the right
part of Fig. 3 that this symmetry operations combined with the time reversal
operator T result in proper symmetry operations (TC2⊥) for the ferromagnetic
state [144].
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Fig. 3. Orbital current density jp for bcc-Fe in the (001)-plane (left). The right part
gives the corresponding radial component scaled by a factor of around 350 with respect
to the left part. For display jp has been weighted with r2.

3.2 Orbital Magnetic Moments

With the spin-orbit-induced orbital current density in magnetic solids there is
obviously a finite orbital angular momentum density associated. For a rotational
symmetric current density distribution, for example, one has circular currents
implying the simple relationship [83]

〈βlz(r)〉 =
1

2
√
2
〈rjp,φ(θ, r)〉 , (82)

where jp,φ is the φ-component of jp that gives its magnitude along a closed
circular loop.

Connected with 〈βlz〉 there is of course a corresponding orbital magnetic
moment µorb that can be obtained via Eq. (82) or directly from the conventional
expression [24,83]:

µorb = −µB
π
Trace�

∫ EF

dE

∫
d3r βlzG(r, r, E) . (83)

As Fig. 4 shows, the spin-orbit induced µorb contributes 5 to 10 % of the total
magnetic moments of the elemental ferromagnets Fe, Co and Ni. However, one
also notes from this figure that the results obtained on the basis of plain SDFT
are much too small compared with experiment in the case of Fe and Co. To
cure this problem, that also occurs for f -electron systems, Brooks introduced
the OP-formalism [113], that was originally restricted to k-space band structure
methods. Using the real-space formulation given above, one can see that it ef-
fectively leads to a feed-back of the spin-orbit induced orbital current into the
potential term of the Dirac equation (see Eq. (19)). Based on the corresponding
spin- and orbital polarized relativistic (SOPR) KKR-formalism [118], one finds
a strong enhancement of the orbital magnetic moment for Fe and Co leading to
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Fig. 4. Orbital magnetic moments for bcc-Fe, fcc-Co and fcc-Ni. The various columns
represent from left to right the experimental data (E) [172] and the theoretical data
obtained by the plain SPR-KKR- (K), within CDFT (C) [109] as described in the text
as well as the SOPR-KKR (O) [118] including the OP-potential term. The last column
labeled with L gives results obtained using the LMTO that account for spin-orbit
coupling and the OP-term in the variational step [51,173].

a rather satisfying agreement with experiment (see Fig. 4). The spin magnetic
moment, on the other hand, is hardly affected by inclusion of the OP-term. Fur-
thermore, calculations done in the full-potential mode [83] clearly demonstrated
that the OP-term does not include aspherical potential terms that would be
accounted twice in a full-potential calculation, as it was sometimes suspected in
the past.

Apart from minor numerical differences, the results obtained with the SOPR-
KKR are completely in line with those obtained before using the LMTO-method
[51,173,174]. However, the latter approach accounts for spin-orbit coupling and
the OP-term only in the variational step, while for the SOPR-KKR these are also
included when calculating the wave functions and the corresponding single-side
t-matrices. As a consequence the SOPR-KKR can straightforwardly be combined
with the CPA to deal with disordered alloys. As an example for an application
of the SOPR-KKR-CPA results for µorb of bcc-FexCo1−x are shown in Fig. 5
[118].

In contrast to the investigations of Söderlind et al. [175] done using the LMTO
together with the virtual crystal approximation (VCA) alloy theory [156] the
SOPR-KKR-CPA supplies component-resolved results. As one can see in Fig. 5
the enhancement of µorb for Fe and Co in bcc-FexCo1−x are very similar to that
found for the pure metals. Again this enhancement brings the average orbital
magnetic moment for the alloy in very satisfying agreement with experiment.

Because the OP-term is very similar in form to the operator representing
spin-orbit coupling as a correction or perturbation, one may expect that it
will not only affect the spin-orbit induced orbital magnetic moments but also
any other quantity caused by spin-orbit coupling. This is in general indeed
the case as it could be demonstrated by investigations on the spin-orbit indu-
ced band-splittings [176], the orbital contributions to the hyperfine fields [118],
the magneto-crystalline anisotropy [177], galvano-magnetic properties [178], the
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Fig. 5. Orbital magnetic moments in bcc-FexCo1−x. The triangles pointing up- and
downwards represent the theoretical moments of Fe and Co, respectively, while the
concentration weighted sum is given by circles. Full and open symbols stand for results
obtained with and without the OP-term included (SOPR- and SPR-KKR-CPA, resp.).
Experimental data [172] for the average magnetic moment (right part) stemming from
magnetomechanical and spectroscopic g-factors are given by full squares and diamonds.

magneto-optical Kerr effect [179] and the magnetic dichroism in X-ray absorp-
tion [180].

Using the OP-formalism, one obviously leaves the framework of density fun-
ctional theory and arrives at a heuristic hybrid scheme. From a formal point of
view CDFT therefore supplies a much more satisfying basis to deal with orbital
magnetism. Results for µorb of Fe, Co and Ni, that have been obtained using the
relativistic version of Vignale and Rasolt’s CDFT-formalism, are given in Fig. 4
[109]. Obviously using CDFT instead of plain SDFT leads indeed to an enhan-
cement of µorb for Fe and Co. Although this effect is found to be too small, one
may expect that the remaining deviation from experiment will be reduced with
improved parameterizations for the exchange-correlation potentials available.

The basic CDFT-Hamiltonian in Eq. (14) does not rule out the existence
of a finite orbital magnetic moment in the non-relativistic limit. With the help
of model calculations, it could be demonstrated that this is not the case [109].
Starting a SCF-calculation with a finite spin-orbit induced orbital current den-
sity and switching off the spin-orbit coupling during the SCF-cycle the orbital
magnetic moment vanished.

Using Vignale and Rasolt’s formulation of CDFT [104,105], one has to use the
current density in a spin-projected way. This leads to quite large contributions in
the nucleus near region stemming from the core states, that essentially cancel if
the spin contributions are summed up (see for example Fig. 3). However, for tran-
sition metals the corresponding core contributions to the exchange-correlation
potential Axc,σ(r) has not much overlap with the current density of the valence
d-electrons. Because µorb stems primarily from these, the core contribution to
Axc,σ(r) can be neglected. For bcc-Fe the corresponding valence band part of
the polar component of the spin-dependent exchange-correlation vector potential
Axc,σ(r) is given in Fig. 6 (left part). Because the OP-term can be manipulated
to represent a coupling to the electronic orbital degree of freedom or current,
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Fig. 6. Left: Valence band part of the polar component of the spin-dependent
exchange-correlation vector potential Axc,σ(r, θ) for bcc-Fe (in atomic units). The full
and dashed lines give the potential for minority and majority character, respectively,
for θ = π/2. Right: The OP potential term BOP

σ for bcc-Fe as calculated by the self-
consistent FP-OP-SPR-KKR.

respectively, a corresponding vector potential function BOP
σ can be constructed

within the OP-formalism [83]. However, one has to keep in mind that the phy-
sical picture behind the OP-formalism is quite different from the CDFT as used
here. While for the former case one tries to account in an approximate way for
intra-atomic correlations, the vector potential occurring within CDFT is due to
diamagnetic contributions to the exchange-correlation energy of the electron gas.
Accordingly, it is not surprising that the resulting vector potential function (see
Fig. 6) for the OP-formalism is quite different from that obtained within CDFT.
In spite of this fundamental difference one finds the current density jp,σ calcu-
lated within the extended OP-formalism to be very similar to that calculated
within the framework of CDFT [83], i.e. both differ only with respect to their
absolute magnitude but not concerning their radial variation. For this reason,
the OP-formalism, that is extremely simple to be implemented, may be used
to study the influence of corrections to the exchange-correlation energy due to
finite orbital currents as long as no better parameterizations for this have been
derived within CDFT.

3.3 Hyperfine Interaction

Quadrupolar Hyperfine Interaction The nuclear quadrupolar hyperfine in-
teraction, that can be investigated experimentally, for example, by means of
Mößbauer spectroscopy or NMR, denotes the coupling of the nuclear quadrupole
moment Q with the electric field gradient (EFG) stemming from the surroun-
ding electronic charge distribution. Because the nuclear quadrupolar hyperfine
interaction reflects the local site-dependent symmetry of the charge and poten-
tial distribution in a rather direct way, it provides a unique tool to investigate
the consequence of the spin-orbit coupling for the symmetry of a spin-polarized
cubic solid.

The electric field gradient, that is only non-zero for a site-symmetry lower
than cubic, can be calculated straightforwardly from the Coulomb part of the
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electronic potential V . Expanding V into spherical harmonics (see Eq. (44)) one
has, for example, for the zz-component of the electric field gradient tensor [181]:

Φzz = eq = 2 lim
r→0

V20(r) . (84)

As an alternative, the EFG can also be calculated from the corresponding non-
spherical charge distribution term ρ20(r) within the central Wigner-Seitz cell
and a Madelung contribution stemming from the multipoles on the neighboring
sites [130,146,181].

For the case that the electric field gradient is caused by the low symmetry
of the underlying lattice it was found in the past that it is often sufficient to
perform self-consistent calculations for the charge density only in the spherical
approximation and to determine the non-spherical charge density ρlml

(r) only in
the final iteration (spherical approximation). In addition it was found from FP-
SPR-KKR calculations on Fe that the spin-orbit induced electric field gradient
stems nearly exclusively from the non-spherical charge density within the central
cell containing the nucleus while the contribution of the surrounding can be
ignored [146]. Using these simplifications together with the ASA-version of the
SPR-KKR formalism the electric field gradient tensor component Φzz can be
written as [139]:

Φzz =
8π
5

∫ S

0

ρ20(r)
r

dr (85)

=
8π
5
e
−1
π

�
∫
dE
∑
ΛΛ′

τΛΛ′
∑
Λ′′Λ′′′

(86)

[
BΛ′′Λ′′′

∫ S

0

gΛ′′Λ gΛ′′′Λ′

r
dr +B−Λ′′ −Λ′′′

∫ S

0

fΛ′′Λ fΛ′′′Λ′

r
dr
]
.

with the angular matrix elements BΛΛ′ given by

BΛΛ′ = δµµ′(−1)µ−1/2

√
(2l + 1)(2l′ + 1)

4π
C(ll′2; 00) (87)∑

ms

Cms

Λ Cms

Λ′ C(ll′2; (µ−ms)(−µ+ms))

and the Clebsch Gordon coefficients C(l 12j; (µ−ms)ms) represented by the short
hand notation Cms

Λ .
This approach has been used to study the properties of 5d-transition metal

impurities dissolved substitutionally in bcc-Fe [182]. These impurity type calcu-
lations have been done in the single-site approximation ignoring the distortion
of Fe-atoms in the vicinity of the impurity. The resulting electric field gradient
parameter q = Φzz/e is shown in Fig. 7 for the whole 5d-series. First of all one
notes that q is only around one order of magnitude smaller than that usually
found for a lattice-induced EFG [187]. Taking into account that the existing ex-
perimental data are scattering quite strongly and that measurements on single
crystals with a definite relative orientation of the magnetization and the crystal
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Fig. 7. EFG parameter q of 5d-transition metal-impurities in Fe. Theoretical results
for the magnetization direction along the z-axis together with their decomposition into
p- and d-electron contributions are given by full, dotted and dashed lines, respectively.
Experimental data stem from powder as well as from single crystal measurements [183–
186].

axis were done only in some few cases, agreement of the theoretical results with
experiment is quite satisfying. In particular the pronounced dip of the EFG as a
function of the ordering number Z for Ir seems to be confirmed by experiment.
The variation found for q as a function of Z strongly resembles that obtained
earlier for the spin-orbit induced contributions to the magnetic hyperfine field
[188], which are predominantly of orbital origin. Earlier, more qualitative in-
vestigations [189,190] assumed that this contribution is exclusively due to the
d-electrons. However, it turned out that the p-electrons contribute to a simi-
lar extent to the magnetic hyperfine field showing only a weak variation with
Z [188]. A similar situation is encountered here for the EFG parameter q. As
can be seen in Fig. 7 the p-electrons contribute in particular for the early 5d-
transition metals, where they exceed the d-electron contribution. Nevertheless,
one also notes that the variation of q with Z is primarily due to its d-electron
part.

Based on perturbation theory it was expected that the spin-orbit induced
EFG should depend quadratically on the spin-orbit coupling strength [184].
Using the manipulation scheme described in section 2.2 this could be verified
for the d-electron contribution, while for the p-electrons a pronounced deviation
from the quadratic dependency has been found. So far it has been assumed that
the spin-orbit induced EFG stems predominantly from the spin-diagonal part
ξzz of the spin-orbit coupling (see Eq. (66)). However, performing corresponding
model calculations it was found that the spin-mixing part ξxy contributes to the
same order of magnitude but with opposite sign.

Because the EFG reflects the local symmetry one expects it to change with
the orientation of the magnetization; i.e. it should monitor the fact that the
spin-orbit induced anisotropy is anisotropic. This could indeed be demonstrated
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recently by Seewald et al. [46], who determined the EFG of Ir in bcc-Fe for
the magnetization pointing along the [001]-, [111]- and [110]-directions. It is
interesting to note that this type of anisotropy was too weak to be detected
in the case of magneto-optical Kerr effect (MOKE) investigations on fcc-Co
[191,192].

Magnetic Hyperfine Interaction The magnetic hyperfine interaction repre-
sents the interaction of the nuclear magnetic moment µn with the current density
j of the surrounding electronic system. In its relativistic form the corresponding
operator Hhf is given by [7,193]:

Hhf = ecα · µn × r/r3 . (88)

Here only the static part of the hyperfine interaction is considered. Assuming
the magnetization and quantization axis to point along the z-axis, only the part
Hhf,z ∝ αz(µn × r)z has to be accounted for.

Within a non-relativistic theoretical description of the hyperfine interaction it
is conventional to split the total hyperfine interaction operator into three distinct
contributions: the Fermi-contact, the spin-dipolar and the orbital terms. While
the first is relevant only for s-electrons, the other two are connected exclusively
to non-s-electrons. Starting from a Gordon-decomposition of the electronic cur-
rent, a corresponding decomposition of the hyperfine interaction operator Hhf
in Eq. (88) can also be made within relativistic theory [139,182,194]. For the
orbital part one gets for example the expression:

Hhf,orb = 2µBβµnl ·
{
r−3 for r > rn
r−3
n for r < rn

, (89)

where rn is the nuclear radius. This expression already indicates that for the
decomposition of the relativistic hyperfine interaction operator a nucleus of finite
size has to be considered [182,194]. Furthermore one has to note that the various
parts of Hhf are no more exclusively due to s- or non-s-electrons, respectively.

For spontaneously magnetized solids the central hyperfine interaction para-
meter is the hyperfine field Bhf . This quantity is determined by the expectation
value of the static part of the hyperfine interaction operator:

Bhf = 〈Hhf,z〉/�γn , (90)

with γn the nuclear gyromagnetic ratio. Representing the underlying electronic
structure by means of the Green’s function formalism 〈Hhf,z〉 in turn is given by
[24]:

〈Hhf,z〉 = − 1
π
Trace�

∫
dE

∫
d3rHhf,z(r)G(r, r, E) . (91)

Dealing with this expression on a non-relativistic level one gets contributions
to the hyperfine field Bhf only from the Fermi-contact and spin-dipolar terms
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because the orbital magnetization density is quenched in the solid [109] (see
above). Contributions due to the spin-dipolar term are in general ignored because
they arise only from a non-cubic electronic spin density distribution. For these
reasons the standard approach to calculate hyperfine fields is to determine just
its Fermi-contact contribution stemming from s-electrons. In contrast to this
simple but conventional approach, the fully relativistic scheme given above leads
to contributions to the hyperfine field from non-s-electrons as well. These are
caused by the spin-orbit coupling and are non-negligible even for cubic systems
[25].

The left part of Fig. 8 shows the total hyperfine fields of Fe in fcc-FexPd1−x
together with a decomposition into contributions stemming from the core, va-
lence and non-s-electrons. The experimental data available for Fe indicate that
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Fig. 8. Left: Hyperfine fields of Fe in fcc-FexPd1−x. In addition to the total field Bhf

(total) the contributions of the core, valance and non-s-electrons are given separately.
Available experimental data have been added. Right: Contributions Bval of the d-like
valence electrons to the hyperfine fields of Fe in fcc-FexPd1−x. The fields Borb represent
the corresponding orbital part. This has also been determined by the approximation
due to Abragam and Pryce (AP, see Eq. (3.3)) [195].

the theoretical fields are too small in magnitude. Discrepancies similar to these
have been found before for many other systems and have been ascribed to pro-
blems in dealing with the core polarization contribution when the spin density
functional theory is used on a local-density approximation (LDA) level [20,24].
However, improvements to the LDA, like the generalized gradient approximation
(GGA) [196] or the self-interaction correction (SIC) [196,125] did not give much
better results. Using the optimized effective potential (OEP), on the other hand,
very satisfying results for the hyperfine fields of Fe, Co and Ni could be achieved
recently [197].

Within a non-relativistic calculation of the hyperfine fields in FexPd1−x one
would get only contributions due to the s-electrons via the Fermi-contact inter-
action. Within a fully relativistic investigation this part is enhanced by about
10% for Fe [25]. In addition one finds quite appreciable contributions from non-
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s-electrons. These are induced by the spin-orbit coupling and in general opposite
to the normally dominating negative core polarization fields.

The dominating part of the non-s-fields stemming from the valence band
electrons is given once more in Fig. 8 (right part). For Fe this stems nearly
exclusively from the d-electrons. With the proper relativistic decomposition of
the hyperfine interaction in Eq. (88), the origin of these fields can be investigated
in a detailed way. The corresponding fields Borb,d obtained using the relativistic
orbital hyperfine interaction operator (see Eq. (89)) have been added to Fig. 8.
As one can see these fields differ only slightly from Bval,d implying that the fields
coming from d-electrons via the Fermi-contact and spin dipolar interaction are in
general negligible. This is also confirmed by an additional and direct calculation
of these fields. For this reason it is quite well justified to call the spin-orbit
induced hyperfine fields coming from non-s-electrons in a somewhat loose way
orbital [25].

One of the most important consequences of the spin-orbit coupling for ma-
gnetic solids is the presence of a spin-orbit induced orbital electronic current
density that gives rise – according to Eq. (89) – to the orbital hyperfine fields
but that causes also a corresponding orbital contribution µorb to the total ma-
gnetic moment. Because of their common physical origin one can expect the
fields Borb and the moment µorb to be related via [195]:

Borb,l = 2µB 〈r−3〉µorb,l (l = p, d) .

As it can be seen in Fig. 8, this simple approximation works quite well justifying
once more the designation orbital used above.

3.4 Linear Response

Static Magnetic Susceptibility and Knight Shift Using the Green’s fun-
ction formalism for a description of the underlying electronic structure gives
several important advantages when dealing with response quantities. In the case
of the static magnetic susceptibility, for example, it is straightforward that way
to deal with inhomogeneous systems. This has been demonstrated among others
by Terakura et al. [198], who calculated the non-local site-dependent suscepti-
bility χij of several paramagnetic transition metals. A corresponding relativistic
approach has been worked out by Staunton [199] that has been applied to pure
transition metals [200,201] with fcc and hcp structure, respectively. The first step
of this approach is to use the first order-approximation to the Dyson equation
to represent the Green’s function GB of the investigated system in the presence
of an external magnetic field Bext in terms of the Green’s function G of the
unperturbed system:

GB(r, r ′, E) = G(r, r ′, E) + (92)∫
d3r′′G(r, r ′′, E)Hspin

pert(r
′′)G(r ′′, r ′, E) .
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Within the framework of SDFT the perturbing Hamiltonian Hspin
pert is given

by [199–201]:

Hspin
pert = σz[2µBBext − (V ↑

xc − V ↓
xc)] . (93)

Here the second term represents a feedback of the induced spin-magnetization
via the modified exchange and correlation potentials V ↑(↓) that gives rise to the
Stoner enhancement mechanism [202]. The spin susceptibility χspin is obtained
from Eqs. (92) and (93) by calculating the expectation value of the operator βσz
and eliminating the external field Bext [199]:

χspin = − µB
πBext

Trace�
∫
dE

∫
d3r βσzG

B(r, r, E) . (94)

The procedure sketched here is not restricted to calculations of the spin
susceptibility but has a much broader range of application. First of all one has
to note that the perturbing Hamiltonian in Eq. (93) represents just the coupling
of the external magnetic field to the spin of the electrons. In addition, there is
a coupling to the orbital degree of freedom. Within a non-relativistic treatment
this gives rise to the diamagnetic Langevin and Landau susceptibilities and the
paramagnetic VanVleck susceptibility [203,204]. A straightforward way to obtain
the later contribution in a fully relativistic way is to replace the operator χspinpert
in Eq. (93) by:

Horb
pert = 2µBlzBext (95)

and replacing σz by lz in Eq. (94) giving the VanVleck susceptibility χVV instead
of χspin. Here it has to be noted that the standard non-relativistic treatment of
the spin- and orbital magnetic susceptibility do not lead to any spin-orbital cross
terms. Within a fully relativistic treatment, on the other hand, the perturbing
Hamiltonian Hspin

pert in Eq. (93) will lead to a non-vanishing orbital susceptibi-
lity due to the spin-orbit coupling; i.e. replacing σz by lz in Eq. (94) for χspin
will give an orbital contribution in addition to the pure spin susceptibility χspin.
Analogously, calculating the expectation value of βσz with the orbital pertur-
bation Hamiltonian Horb

pert in Eq. (94) will give rise to a spin contribution in
addition to the pure orbital VanVleck susceptibility. The remaining contribu-
tion to the orbital susceptibility – the Langevin and Landau susceptibilities –
can also be treated in a fully relativistic way by a corresponding extension of
the non-relativistic theory [203].

A quantity that is closely connected to the susceptibility is the Knight shift
that gives the ratio of the induced hyperfine field Bhf seen by a nucleus and the
external inducing magnetic field. Using the linear response formalism sketched
above one has [25,205]:

K = − 1
π

1
�γnBext

TrIm
∫
dE

∫
d3rHhf,z(r)G(r, r, E) (96)

where Hhf,z is the z-part of the relativistic hyperfine interaction Hamiltonian (see
Eq. (88)). Making use of the Gordon decomposition of the electronic current
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density, K can be decomposed into the conventional Fermi-contact, the spin
dipolar and the orbital part.

So far, there are only very few theoretical investigations on the Knight shift
in transition metal systems that can be found in the literature. Very similar to
the situation for the hyperfine field of spontaneously magnetized solids nearly
all of these considered only the Fermi contact interaction due to the s-electrons.
Using a non-relativistic version of the linear response formalism presented above,
the first calculation of all contributions to the Knight shift has been done for
the transition metals V, Cr, Nb and Mo [206]. For these metals the VanVleck
contribution to the magnetic susceptibility and to the Knight shift was found to
be of the same order of magnitude as the various spin contributions and to stem
nearly exclusively from the d-electrons. Concerning the magnetic susceptibility
similar results have been obtained by Yasui and Shimizu using a non-relativistic
[207] as well as fully relativistic [208] approach.

Results obtained using the above relativistic linear response formalism are
given in Fig. 9. The left panel of this figure shows the VanVleck susceptibility
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Fig. 9. VanVleck susceptibility χVV (left), expectation value of r−3 (left) and Van-
Vleck contribution to the Knight shift KVV (right) for the d-valence band electrons of
the pure 4d-transition metal elements. The estimation for KVV based on the approxi-
mation proposed by Abragam and Pryce (AP) as well as the total valence contribution
Kval due to the orbital perturbation term Horb

pert in Eq. (95) has been added (right).

χVV of the pure 4d-transition metals. As found within earlier studies a maximum
is present for χVV roughly in the middle of the row. This can be explained by
using a simplified expression for χVV [209] and the fact that here the product
no · nu of the number of occupied (no) and unoccupied (nu) d-states is at its
maximum. From the relationship of the orbital parts of the magnetic moment
and the hyperfine field (see Eq. (3.3)) one can expect an analogous relationship
for the VanVleck contributions to the susceptibility and Knight shift:

KVV,l = 2µB 〈r−3〉χVV,l (l = p, d) . (97)
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As one can see in Fig. 9 (left) the expectation value 〈r−3〉d for the 4d-elements
increases rapidly along the 4d row. The reason for this is that the correspon-
ding d-like wave function gets more and more localized with increasing atomic
number. Combining the results for χVV and 〈r−3〉d using Eq. (97) leads to an
estimate for the VanVleck Knight shift KVV that is shown in Fig. 9 (right). Due
to the variation of 〈r−3〉d the maximum in KVV is obviously shifted to the right
compared with the χVV curve. Fig. 9 shows in addition the shift KVV that has
been obtained by the full formalism; i.e. Eqs. (89), (92), (95), and (96). As one
can see the estimation of KVV using χVV and 〈r−3〉d reproduces the variation
with atomic number quite well. However, in line with previous non-relativistic
results [206], the absolute values differ by up to about 20%. This means that
estimations based on Eq. (97) are in general less reliable than spin-orbit induced
orbital hyperfine fields estimated using Eq. (3.3).

Finally, it should be emphasized that the VanVleck Knight shift KVV given
in Fig. 9 stems from the coupling of the external magnetic field to the orbital
degree of freedom (see Eq. (95)). Because of the use of the relativistic orbital
hyperfine interaction operator (see Eq. (89)) it is by definition of pure orbital
nature. If the full hyperfine interaction operator (Eq. (88)) is used instead, the
Knight shift denoted Kval in Fig. 9 is obtained. The small difference between
KVV and Kval is of pure spin nature. Within a non-relativistic formalism this
cross contribution cannot be accounted for, because it is a consequence of spin-
orbit coupling.

This section is somewhat outside the main issue of this review, because it
presents results for paramagnetic solids. However, one should notice that the
formalism presented above can be applied without modifications to deal with the
high-field susceptibility of spontaneously magnetically ordered solids, as well as
the Knight shift in such systems. Furthermore, one can apply the linear response
formalism also to deal with magneto-crystalline anisotropy or the various kinds
of spin-spin coupling constants [168,210].

Transport properties A further interesting application of the linear response
formalism is the treatment of galvano-magnetic properties of disordered alloys.
Here the Kubo-Greenwood formalism allows one to express the elements of the
electrical conductivity tensor σ in terms of a current-current correlation function
[211,212]:

σµν =
�

πVcryst
Tr

〈
jµ�G+(EF) jν �G+(EF)

〉
conf.

, (98)

where jµ is the µth spatial component of the electronic current density operator
j = ecα. In the following it is assumed that a finite conductivity or resistivity,
respectively, of the investigated system stems exclusively from chemical disorder,
i.e. contributions caused by lattice imperfections, grain boundaries, phonons,
magnons, and so on are ignored. This implies in particular that one is dealing
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with the residual resistivity and that 〈· · · 〉conf. in Eq. (98) denotes the atomic
configuration average for a disordered alloy.

For a paramagnetic cubic solid the conductivity tensor that results from Eq.
(98) is diagonal with all elements identical, i.e. the conductivity is isotropic.
For a ferromagnetic cubic solid, however, this is not the case and the form of
the conductivity tensor depends on the direction of the magnetization reflecting
the lowered symmetry of the system. A very general procedure to work out the
corresponding symmetry properties of response functions has been developed by
Kleiner [213] (for a somewhat alternative approach, see for example Ref. [214]).
For example, for a cubic solid with the magnetization along the z-axis one finds
that way the form [215]:

ρ = σ−1 =


ρ⊥ −ρH 0
ρH ρ⊥ 0
0 0 ρ‖


 . (99)

Here ρ is the resistivity tensor with ρ⊥ and ρ‖ the transverse and longitudinal
resistivities, respectively, and ρH the spontaneous or anomalous Hall resistivity.
In addition one defines the spontaneous magnetoresistance anisotropy (SMA) or
anomalous magnetoresistance (AMR) ratio by [215]:

∆ρ

ρ̄
=
ρ‖(Bext) − ρ⊥(Bext)

ρ̄(Bext)

∣∣∣∣
Bext→0

, (100)

where ρ̄ = 1
3 (2ρ⊥ + ρ‖) is the isotropic resistivity. Here the notation empha-

sizes that experimentally the SMA is determined by measuring ρ‖(Bext) and
ρ⊥(Bext) as a function of an applied external magnetic field Bext and extrapola-
ting to Bext = 0. The reason for this is that in contrast to investigations on the
conventional magnetoresistance ∆ρ/ρ = (ρ(Bext) − ρ(0))/ρ(0) of paramagnetic
solids, the external magnetic field is used here only to align the magnetization
of a sample along a certain direction.

The CPA formalism directly gives access to the configurationally averaged
Green’s function of disordered alloys. However, when calculating response func-
tions for disordered alloys – as for example the conductivity given in in Eq. (98)
– one has to deal with the configurational average of the product of two Green’s
functions. Within the framework of the KKR-formalism, this problem has first
been investigated by Staunton [199] based on the work of Durham et al. [216].
With respect to the conductivity tensor a corresponding expression that is con-
sistent with the single-site CPA-formalism has been worked out in great detail
by Butler [212]. This approach, derived originally for the non-relativistic case,
can straightforwardly be applied also for the spin polarized relativistic case [44]
leading – in contrast to a non-relativistic scheme – in particular to an anisotro-
pic conductivity tensor (see for example Eq. (99)). This makes clear that the
galvano-magnetic effects AHR and SMA are all spin-orbit induced phenomena.

As an example of an application of the formalism sketched here the calculated
isotropic resistivities ρ̄ for the alloy systems CoxPd1−x and CoxPt1−x are shown
in the left part of Fig. 10 [160] together with corresponding experimental data
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measured at low temperature. As one can see, the agreement between calculated
and measured resistivities is very good for CoxPd1−x. The maximum value of
the resistivity in this system (16µΩ·cm) as well as the composition for which the
maximum occurs (about 20% Co) are well reproduced by the calculations.
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Fig. 10. Left: residual isotropic resistivity ρ̄ of disordered CoxPd1−x (•) and CoxPt1−x

(◦) alloys. Full lines: calculated including vertex corrections, broken lines: calcula-
ted omitting vertex corrections. Right: calculated spontaneous magnetoresistance ani-
sotropy (SMA) ratio ∆ρ/ρ̄ of CoxPd1−x (•) and CoxPt1−x (◦) alloys. Experimental
data presented by open squares, diamonds, triangles and crosses stem from various
sources (see Ref. [160])

Using Butler’s approach in dealing with Eq. (98) one accounts for the so-
called vertex corrections within the framework of the CPA. For CoxPd1−x it
was found that their contribution increases from about 2% for 5 at.% Co to
about 25% for 80 at.% Co.

For the system CoxPt1−x the calculated resistivities are much higher than for
CoxPd1−x, reaching almost 40 µΩ·cm for 30 at% Co. This agrees in a satisfactory
way with the experimental maximum of about 35 µΩ·cm at that composition.
In contrast to CoxPd1−x the vertex corrections are quite small for CoxPt1−x,
contributing less than 3% to the total conductivity over the entire composition
range. Previous investigations on paramagnetic alloy systems [217], lead to the
conclusion that the vertex corrections are the more important the lower the d-
like DOS at the Fermi level is. For CuxPt1−x [217], for example, this applies to
the noble metal rich side of this system. For ferromagnetic systems, on the other
hand, the vertex corrections seem to be more important, if the d-like DOS at
the Fermi level is low at least for one spin subsystem. For this reason, they are
more pronounced for CoxPd1−x compared to CoxPt1−x and more important on
the Co-rich side of both systems.

The anisotropy ratios (SMA) calculated from the transverse and longitudinal
resistivities are shown in the right part of Fig. 10 for the two alloy systems
CoxPd1−x and CoxPt1−x. Experimental values for both systems are included
for comparison. CoxPd1−x shows remarkably high SMA values of more than 6%

228 H. Ebert



Relativistic Band Structure of Magnetic Solids 229

for concentrations higher than 20 at.% Co [218,219]. The calculations reproduce
the increase of the experimental data at low Co concentrations very well. For
higher Co concentrations the calculated values are slightly too low. Note that
the SMA in CoxPd1−x is still as large as 1.5% even for very low Co contents
[219,220] which was attributed to local orbital moments on the magnetic sites
in Ref. [219]. In contrast to CoxPd1−x the SMA for CoxPt1−x was found to be
below 1% throughout the whole concentration range [221,222]. These findings
are perfectly reproduced by the relativistic calculation which reflects the slowly
varying SMA in CoxPt1−x.

It was realized already years ago that the SMA and also the AHR are cau-
sed by the spin-orbit coupling. Nevertheless, for the discussion of experimental
data corresponding phenomenological descriptions had to be used in the past.
These approaches were based on Mott’s two-current model that ascribe to each
spin subsystem an independent current contribution and introduced a number of
model parameters. The SPR-KKR-CPA formalism, on the other hand, does not
rely on Mott’s two-current model and allows for a parameter-free and quantita-
tive investigation of galvano-magnetic properties. By manipulating the strength
of the spin-orbit coupling it was possible in particular to demonstrate explicitly
the dependency of the SMA and the AHR on the spin-orbit coupling [223]. In
addition it could be shown that even the isotropic resistivity ρ̄ can be strongly
influenced by the spin-orbit coupling, as it has been expected before [159].

Further insight into mechanisms giving rise to galvano-magnetic effects can
be obtained by decomposition of the spin-orbit coupling. To demonstrate this,
corresponding results for ρ̄ and SMA ratio ∆ρ/ρ̄ are given in Fig. 11. The left

0.0 20.0 40.0 60.0 80.0 100.0
xFe (at. %)

0.0

1.0

2.0

3.0

4.0

_ ρ 
(µ

Ω
 c

m
)

ξ
ξxy

ξzz

ξ=0

0.0 20.0 40.0 60.0 80.0 100.0
xFe (at. %)

0.0

10.0

20.0

∆ρ
/_ ρ 

(%
)

ξ
ξxy

ξzz

Fig. 11. Isotropic residual resistivity ρ̄ (left), and spontaneous magnetoresistance
anisotropy ratio ∆ρ/ρ̄ (right) of disordered bcc-FexCo1−x alloys calculated in four
different ways. The results obtained using the full spin-orbit coupling – indicated by ξ
– are represented by full circles. Open triangles give the results obtained keeping the
xy-part ξxy and zz-part ξzz, respectively, of the spin-orbit coupling. Full squares give
the result with the spin-orbit coupling completely suppressed (ξ = 0).

part of this figure shows the isotropic residual resistivity ρ̄ of bcc-FexCo1−x ob-
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tained from calculations using the full spin-orbit coupling (ξ). As one notes, the
variation of ρ̄ with composition is strongly asymmetric. This corresponds to the
experimental findings [224,225]. The deviation from a parabolic shape can be
qualitatively explained by the change of the DOS at the Fermi energy n(EF)
that decreases monotonously with increasing Fe content. Keeping only the spin
mixing part ξxy of the spin-orbit coupling (see Eq. (66)), one finds that ρ̄ hardly
changes. This already indicates that the spin mixing is the primary source for the
relativistic enhancement of ρ̄. This spin mixing or hybridization has already be
demonstrated by means of the spin-projected Bloch spectral function AB(k, E)
in Fig. 2 showing for fcc-Fe0.2Ni0.8 that there is an appreciable minority spin
character admixed to the majority spin states which form a Γ -centered sheet
of the Fermi surface and which primarily carry the electronic current [159,157].
Admixture of minority spin character clearly opens for these states a new scatte-
ring channel that is very effective because of the high DOS n↓ (EF) at the Fermi
energy with minority spin character. As a consequence, the total resistivity has
to go up remarkably compared to a calculation based on the two-current model
[161]. This interpretation is confirmed by the results obtained by keeping just
ξzz; i.e. suppressing the spin mixing effect of the spin-orbit coupling. In Fig. 11
one can see that this manipulation leads to a strong reduction of the total re-
sistivity throughout the whole range of concentration. To demonstrate that the
remaining part ξzz of the spin-orbit coupling has practically no influence on ρ̄, an
additional calculation has been carried out with the spin-orbit coupling comple-
tely suppressed (ξ = 0). The corresponding results nearly completely coincide
with the ξzz-data confirming this expectation. Here one should note that the
latter calculational mode (ξ = 0) – although technically somewhat different –
corresponds essentially to a calculation on the basis of the two-current model,
where the electronic structure is calculated in a scalar relativistic way; i.e. with
the relativistic corrections Darwin- and mass-velocity-terms taken into account
[223].

For the spin-orbit induced SMA ratio the results obtained by the various
calculations are given in the right part of Fig. 11. Here one finds that keeping
only ξxy slightly reduces ∆ρ/ρ̄ . This means that in contrast to ρ̄, ξzz has some
small effect on this quantity. Nevertheless, one finds that keeping ξzz alone brings
∆ρ/ρ̄ essentially to zero. From this result it can be concluded that the part ξzz
of the spin-orbit coupling can in general be neglected as a source for the SMA
compared to ξxy. Finally, setting ξ = 0 of course reduces ∆ρ/ρ̄ exactly to zero
[223].

The model calculations performed for the residual resistivity tensor elements
of FexCo1−x allow to check the above mentioned phenomenological models for
the galvano-magnetic effects. For example, Smit ascribed the occurrence of the
SMA to the spin hybridization caused by the spin-orbit coupling [226]. From
an analysis of experimental data, on the basis of corresponding expressions for
∆ρ/ρ̄, Jaoul et al. concluded that there should be an additional contribution due
to the spin-diagonal part of the spin-orbit coupling [227]. The results presented
in Fig. 11 clearly demonstrate that the mechanism discussed by Jaoul et al. can
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be neglected for the isotropic resistivity ρ̄ and has only minor contribution to
the SMA in the case of the alloy system bcc-FexCo1−x.

Finally, it should mentioned that the expression for the conductivity tensor
σ given in Eq. (98) has been generalized recently by Butler et al. [228] to deal
with the giant magnetoresistance (GMR) of multilayer systems. A corresponding
spin polarized relativistic formulation has been given by Weinberger et al. [229]
that includes in particular the influence of the spin-orbit coupling. An extension
of Eq. (98) to finite frequencies ω is also straightforward leading to absorptive
part of the optical conductivity tensor σ (ω). This has been done recently by
Banhart for the visible regime of the light and for paramagnetic alloy systems
[230]. For ferromagnetic systems this extension gives directly access to the spin-
orbit induced magneto-optical Kerr effect (MOKE) that has been investigated so
far exclusively by means of conventional k-space band structure methods as for
example the SPR-LMTO [42]. The only exception to this is the work Huhne et
al. [231], who developed a very general expression for σ (ω) within the framework
of SPR-KKR. This approach should in particular supply a sound basis for an
investigation of the oscillations of the Kerr-rotation observed for layered surface
systems like Au/Fe/Au [232–234].

3.5 Spectroscopy

Magnetic Circular Dichroism in X-ray Absorption Magneto-optical ef-
fects in the visible regime of light are known now for more than 100 years [41,235]
and it was realized more than 60 years ago that spin-orbit coupling plays a cen-
tral role for these [236]. Guided by their experience with the magneto-optical
Kerr effect (MOKE) Erskine and Stern [237] suggested that there should be a
corresponding magnetic dichroism in X-ray absorption when circularly polari-
zed radiation is used. This magnetic circular X-ray dichroism (MCXD) could
be demonstrated for the first time for transition metals by Schütz et al. [43]
by measurements at the K-edge of Fe in bcc-Fe in the XANES-region. Later on
these authors could also observe the magnetic dichroism in the EXAFS region by
investigation on the L2,3-edge spectra of Gd in hcp-Gd [238]. Motivated by the
MCXD-measurements on bcc-Fe a corresponding fully relativistic description
has been developed that is based on the SPR-KKR-formalism [84,85] and that
has been applied since then to a great variety of different systems [42]. Recently,
this approach was extended to deal with magnetic EXAFS (MEXAFS) by ma-
king use of the cluster approximation for the multiple scattering representation
of the final states.

Using the SPR-KKR-formalism the X-ray absorption coefficient µqλ(ω) is
given by [42]:

µqλ(ω) ∝ �
∑
i occ

[∑
ΛΛ′

Mqλ∗
Λi (Ei + �ω)τnmΛΛ′(Ei + �ω)Mqλ

Λ′i(Ei + �ω)

+
∑
Λ

Iqλ
Λi (Ei + �ω)

]
. (101)
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Here the sum i runs over all involved core states with energy Ei and wave
function Φi. The electron-photon interaction operator Xqλ, occurring in the
matrix elements Mqλ

Λi , carries in particular information on the wave vector q

of the radiation and on its polarization λ. The last term Iqλ
Λi in Eq. (101) is

an atomic-like matrix element [42] and is connected to the term in the Green’s
function involving the irregular solution to the Dirac equation (see Eq. (71)).
Accordingly, it contributes only when working with complex energies.

Although there are also various forms of linear magnetic dichroism, most ex-
perimental investigations on the magnetic dichroism in X-ray absorption spec-
troscopy use circularly polarized radiation because the circular dichroism is most
pronounced. To allow for a sound interpretation of the corresponding dichroic
signal ∆µ = µ+ − µ−, given by the difference in absorption of left and right
circularly polarized radiation, a set of so-called sum rules have been derived by
several authors [239–242]. The main virtue of these rules is that they should
allow one to obtain a reasonable estimate for expectation values 〈σz〉 and 〈lz〉
of an absorber atom from its energy integrated dichroic signals

∫
∆µ(E)dE. Of

course, this is a very appealing property because these quantities are directly
proportional to the spin and orbital magnetic moments, µspin and µorb, respec-
tively. However, in applying the sum rules one of the main problems is to fix the
upper energy integration limit. For that reason it has been suggested to apply
the sum rules in their differential form and to discuss the dichroic spectra ∆µ(E)
directly. For the L2,3-edges these differential sum rules are given by [77]:

3 [∆µL3 − 2∆µL2 ] = Cd

(
d

dE
〈σz〉d + 7

d

dE
〈Tz〉d

)
(102)

2 [∆µL3 +∆µL2 ] = Cd
d

dE
〈lz〉d . (103)

Here Cd is a normalization constant and Tz is the magnetic dipole operator, that
often can be ignored. Thus, the basic information to be deduced from the dichroic
signal are the spin- and orbital polarization, d

dE 〈σz〉d and d
dE 〈lz〉d, respectively,

of final states with d-character.
The magnetic dichroism of the L2,3-edge spectra of Pt in disordered FexPt1−x

alloys has been studied experimentally as well as theoretically in great detail in
the past [243–247]. Typically for Pt L2,3-spectra it was found that the white
lines at the L2- and L3-edges are quite different because of the influence of the
spin-orbit coupling acting on the final states. This finding makes clear that a
fully relativistic approach is indispensable to achieve a quantitative description
of the L2,3-absorption spectra of Pt. This applies in particular if one is dealing
with magnetic EXAFS (MEXAFS). To deal with the MCXD in the X-ray ab-
sorption of Pt in ordered Fe3Pt the scattering path operator τnnΛΛ′ entering the
expression for the absorption coefficient µqλ was calculated using the matrix
inversion technique for a cluster of 135 atoms in the XANES and 55 atoms in
the EXAFS region, respectively, including the central absorber site. The effects
of self-energy corrections [141,248] have been accounted for after calculating the
spectra.
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The top panel of Fig. 12 shows the results of calculations for the L2-edge
EXAFS-spectra of Pt in ordered Fe3Pt. Corresponding experimental data, ob-
tained by Ahlers and coworkers [249] for an ordered but slightly off-stoichiometric
sample, are added. As one can see, the agreement of the theoretical and experi-
mental spectra is quite satisfying, demonstrating in particular that the experi-
mental sample is indeed ordered [250].

The circular dichroic spectrum ∆µL2 for the L2-edge is shown in the bottom
panel of Fig. 12. Again a very satisfying agreement with the corresponding expe-
rimental results could be achieved. The results for∆µL2 clearly demonstrate that
the occurrence of magnetic dichroism is by no means restricted to the white line
region. Although the amplitude for ∆µL2 is quite small compared to the white
line region, it is present throughout the whole EXAFS-range.

As mentioned above, the applicability of the sum rules in their conventional
form seems to be somewhat doubtful because of these findings. Nevertheless a
clear-cut interpretation of the MEXAFS-spectra can be given making use of the
sum rules in their differential form. In the upper part of Fig. 13 a superposi-
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Fig. 12. EXAFS- (top) and MEXAFS-spectra (bottom) at the L2-edge of Pt in Fe3Pt.
Calculations for the ordered compound (full line), compared against the experimental
data for the Fe0.72Pt0.28 (dotted line) [249].

tion of the theoretical magnetic dichroism spectra ∆µL2 and ∆µL3 according to
Eq. (102) is given (here the very small contribution d

dE 〈Tz〉d has been neglected).
This is compared to the spin polarization d

dE 〈σz〉d of the d-states that have been
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obtained directly from the band structure calculations. In the lower part of Fig.
13 the superposition according to Eq. (103) of the dichroic spectra is compared
with the directly calculated orbital polarization d

dE 〈lz〉d of the d-states. To com-
pare the spectroscopic data with the band structure results the normalization
factor Cd in Eq. (102) and (103) has been used as a free scaling parameter using
the same value for the upper and lower part of Fig. 13.
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Fig. 13. Top: Spin polarization d
dE

〈σz〉d for the d-states of Pt (full line) compared to
those derived from the MCXD-spectra using Eq. (102) (dashed line). Bottom: Orbital
polarization d

dE
〈lz〉d for the d-states of Pt (full line) compared to those derived from

the MCXD-spectra using Eq. (103) (dashed line).

The nearly perfect coincidence of the various curves in the upper and lower
part of Fig. 13 convincingly demonstrates that the primary information that
can be deduced from circular L2,3-MEXAFS spectra is the spin and orbital
polarization for the final d-like states of the absorber atom. Of course, these are
no pure atomic-like properties but concerning their variation with energy they
strongly depend on the bonding to their surrounding. For this reason it is quite
reasonable to perform a Fourier transform to the MEXAFS-spectra to seek for
information on the magnetization distribution around the absorber atom [249].
However, the relationship of the magnetic radial distribution is by no means
trivial. Nevertheless, it seems to be worth to investigate this relationship in more
detail to be able to deduce further magnetic information from MEXAFS-spectra
in a sound and reliable way.
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Magnetic Dichroism in the VB-XPS Nowadays, the standard approach
to deal with angular-resolved photoemission is to use the one-step model [251]
together with the layer-KKR formalism [148]. A corresponding relativistic ver-
sion for paramagnetic solids of this approach has been developed by Ackermann
and Feder [252] and Ginatempo et al. [253] to study spin-orbit induced pola-
rization effects in photoemission. In addition, a spin polarized relativistic and
full-potential version has been introduced recently by Feder et al. [90] and Flucht-
mann et al. [149] to deal with magnetic dichroic effects in magnetic solids. As
an alternative to the above mentioned layer-KKR formalism, one can use the
real-space multiple scattering formalism as well [254]. A corresponding expres-
sion for the time-reversed LEED-state used to represent the final states of a
photo-emission experiment has been worked out first by Durham [255]. For the
spin polarized relativistic case the LEED-state φLEEDk,ms

(r, E) is given by [256]:

φLEEDk,ms
(rn, E) = 4π

√
E + c2

2E + c2
∑
Λ

il Cms

Λ Y µ−ms

l

∗
(k̂) (104)

∑
m

eikRm

∑
Λ′
τmnΛΛ′(E)ZnΛ′(rn, E) .

where k andms denote the wave vector and spin character of the photo-electron.
With the LEED-state available, it is straightforward to derive expressions for the
photo-electron current intensity I(E,ms;ω, q, λ) for any kind of photoemission
experiment making use of Fermi’s golden rule [251,256]. For excitation with high
energy photons, multiple scattering may be neglected for the final states, leading
to the so-called single scatterer approximation [257]. Dealing in addition with
angle-integrated spectra leads to a rather simple expression for the photo-current
intensity. In the case of VB-XPS one finds in particular [89]:

I(E,ms;ω, q, λ) ∝
∑
α

xα�
∑
ΛΛ′′

µ = µ′′

C−ms

Λ C−ms

Λ′′ (105)

{∑
Λ1 Λ2

τ0 0, αΛ1Λ2
(E)

[∑
Λ′
t0, αΛ′Λ(E

′)Mqλ, α
Λ′Λ1

][∑
Λ′′′

t0, αΛ′′′Λ′′(E′)Mqλ, α
Λ′′′Λ2

]∗

−
∑

Λ′ Λ′′′ Λ1

t0, αΛ′Λ(E
′)Iqλ, α
Λ′Λ1Λ′′′t

0, α∗
Λ′′′Λ′′(E′)

}
.

Dealing with a paramagnetic solid this expression can be further simplified lea-
ding to the familiar result that the VB-XPS intensity is given by the sum over
the κ- or angular-momentum j resolved DOS nκ of the occupied part of the
valence band with each contribution weighted by an appropriate cross-section
σκ [258].

The spin polarized relativistic approach presented above has been applied
among others to calculate the VB-XPS spectra of the disordered alloy system
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CoxPt1−x [89]. Theoretical spectra for various concentrations are given in Fig.
14 for unpolarized radiation with �ω = 1253.6 eV. As can be seen, these spectra
agree very well with corresponding experimental data reported by Weller and
Reim [259].

As mentioned above, for the paramagnetic case the expression for the photo
current in Eq. (105) can be simplified to a concentration weighted sum over
the products of the κ-resolved partial DOS nκα(E) and a corresponding matrix
element that smoothly varies with energy [258]. This means that the XPS-spectra
map the DOS-curves in a rather direct way. This essentially holds also for the
spin-polarized case. As can be seen from the DOS curves of CoxPt1−x (see for
example Ref. [89]) both components retain the gross features of their electronic
structure when they are combined to an alloy system: while Co has a narrow and
strongly exchange-split d-band complex close to the Fermi level, the Pt d-band is
rather broad and only slightly spin-split due to hybridization in the region of the
Co d-band. This behavior supplies a very simple explanation for the variation
of the spectra in Fig. 14 with composition and allows one to ascribe prominent
features as shoulders and peaks to either Co or Pt. Nevertheless, one has to
note that these spectra are not just a concentration weighted sum of the spectra
for pure Co and pure Pt. One reason for this is that there are non-negligible
changes of the component-resolved DOS-curves compared to those of the pure
constituents. In addition one can see from Fig. 14 that for the selected photon
energy the partial photoemission absorption cross section that depends on the
initial state energy E as well as the photon energy �ω is about a factor of two
higher for Pt than for Co.

Performing angular-resolved photoemission experiments for disordered alloys
seems to be profitable only in some favorable cases for which disorder does not
prevent the existence of a rather well-defined dispersion relation [260]. While
this applies for example to FexNi1−x (see Fig. 2) this is surely not the case
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Fig. 14. Theoretical VB-XPS spectra (left) for CoxPt1−x for unpolarized radiation
and photon energy �ω = 1253.6 eV. The corresponding experimental data (right) have
been taken from Weller and Reim [259].
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for CoxPt1−x. Nevertheless, deeper insight into its electronic structure and in
particular its magnetic aspects can be obtained by VB-XPS experiments done
using circularly polarized radiation. In the case of CoxPt1−x [89] but also for
FexCo1−x [261] the calculation of the VB-XPS spectra predict a non-negligible
circular dichroism even for the angular averaged spectra that should be strong
enough to be detected within an experiment (corresponding measurements have
not yet been done). The circular dichroism occurs primarily in the region of
pronounced spin-polarization and has the same sign throughout that energy
region. This behavior differs from that of the angular resolved theoretical spectra
obtained by Scheunemann et al. [90] for the normal emission from perpendicular
magnetized Ni (001) that show a circular dichroism that change sign with binding
energy with the energy integrated dichroism spectrum essentially vanishing [90].
While these specific spectra map states well below the Fermi energy with both
spin characters contributing roughly to the same extent, the angular integrated
spectra are dominated by the majority spin character [89]. Therefore, shifting
the Fermi energy artificially to higher energies should result in a reversal in sign
for the dichroism in the VB-XPS spectrum with the energy integrated signal
going to zero.

A more pronounced circular dichroism than for the spin-averaged case is fo-
und for the spin-polarized case, with corresponding spectra given in Fig. 15.
Again the circular dichroism occurs primarily in the energy region showing pro-
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Fig. 15. Theoretical spin-resolved VB-XPS spectra of Co0.6Pt0.4 for circularly pola-
rized radiation and photon energy �ω = 1253.6 eV.

nounced spin-polarization. Comparing the circular dichroism signal for the two
different spin characters one notes that they are opposite in sign. This behavior
has also been found before for the spin-resolved spectra mentioned above and
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explained as a direct consequence of the spin orbit coupling [90]. Finally it should
be mentioned that circular dichroism spectra similar to that shown in Fig. 15
are found if the photon energy �ω is varied. Setting �ω to a value for which
one of the components possess a Cooper minimum allows one to get additional
component specific information. This could supply very helpful information on
the nature of the initial states and the contribution of the various components
for the very complex magneto-optical Kerr-rotation spectra of transition metal
alloys and compounds [262].

4 Summary

The formal background to deal with the electronic structure of magnetic solids,
accounting simultaneously for relativistic effects, has been reviewed. The main
emphasize has been laid on a four-component formalism that is based on a Dirac
equation set up within the framework of DFT. As recent developments in this
field, the inclusion of the Breit-interaction and the use of CDFT has been discus-
sed. Solving the corresponding single site problem allows in principle to set up for
any band structure method the necessary four-component spherical basis func-
tions that account on a corresponding level of sophistication simultaneously and
on the same footing for magnetic order and relativity. Here, the KKR-method
has been used and accordingly several recent developments concerning this – as
the incorporation of the OP-formalism, the full-potential formalism or the TB-
version – have been discussed or mentioned. The main motivation for using the
KKR-method stems from the fact that all features of the underlying Hamilto-
nian are directly incorporated in the corresponding wave functions, in contrast
to schemes that account for corrections to an unperturbed Hamiltonian within
a variational procedure. In addition, it directly gives access to the electronic
Green’s function. This very appealing feature has been exploited within many
of the presented applications, as for example in the case of impurity systems
lacking Bloch-symmetry.

Independent of the use of the KKR-method, the presented applications de-
monstrated that the spin-orbit coupling influences the properties of magnetic
solids in various, quite different, ways. In some cases one gets just a correction
to results that are obtained by a non- or scalar relativistic calculation. Of course,
most interesting are pure spin-orbit induced properties that would not occur if
the spin-orbit coupling or magnetic order would be absent. Nearly all properties
discussed here fall into this category.

Using the full Dirac-formalism to deal with magnetic systems is of course
very satisfying from a formal point of view but makes it in general quite cum-
bersome to give a simple interpretation of the numerical results. For this reason,
approximate schemes, as those presented here, are very helpful and important
for the discussion of the various spin-orbit induced properties. In particular, they
allow to decide which consequence of the spin-orbit coupling is more important:
lifting of energetic degeneracies or spin-hybridization. Concerning this question,
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it was demonstrated that the relevance of this two effects can be quite different
for a spin-orbit induced property.

Altogether, one can claim that in general a rather satisfying quantitative
agreement of theoretical and experimental data can be achieved when calcula-
ting spin-orbit induced properties. Remarkable deviations occur primarily if one
is investigating properties closely connected with orbital magnetism. The most
promising way to remove these problems in a consistent way, i.e. in particu-
lar within the framework of DFT, is to apply CDFT. Because of the delicate
situation it might be necessary to perform the corresponding calculations in
the full-potential mode and/or to use the optimized effective potential (OEP)
scheme in addition. Anyhow, whatever will happen in this and related fields in
the future, working with the four-component Dirac-Green’s function-formalism
will guaranty that one is open and prepared for any new developments.
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Abstract. A review of a state of the art, theoretical method for calculating the ma-
gneto crystalline anisotropy (MAE) is given. The fundamentals of first principles, total
energy calculations, i.e. density functional theory, are described. In addition one of
the most common methods for solving the Kohn–Sham equation, the linear muffin–tin
orbital method, is described briefly. Technical aspects and difficulties for performing
theoretical studies of the MAE are discussed and several examples are given. It is poin-
ted out that the orbital magnetism and the MAE often are intimately connected. The
MAE is also argued to be connected to other details of the electronic structure, such
as the values of the density of states (DOS) at the Fermi level, the partitioning of
the DOS into crystal field components and the hybridization with orbitals of possible
ligand atoms.

1 Introduction

Today we are witnessing how modern electronic structure theory has become a
very useful theoretical tool in explaining and complementing experiments. Often
accurate calculations can reproduce observed magnetic properties such as the oc-
currence of ferro-, ferri-, antiferro- and paramagnetism. Also, the direction and
magnitude of the magnetic moments of bulk, surface and inter-phase systems
are normally described well, as is the preferred easy axis of the magnetization
direction, something which is called the magneto–crystalline anisotropy-MAE.
In addition it has become possible to reproduce the finding that magnetic mo-
ments do not always point in the same direction, as is the case in non–collinear
magnets and systems with spin spirals [1]. Parallel to this development, theories
of micro–magnetism [2] have advanced attempting to describe processes such as
magnetization reversal and nucleation when the direction of an external field
is changed. These theories describe ‘realistic’ magnetization phenomena, such
as domain formation, domain walls (Bloch and Neel walls), magnetization ro-
tation and curling, etc., which may not always be accessible directly to first
principles theorists. However, one important parameter in these theories is the
magneto-crystalline anisotropy (MAE). Information of this physical property is
often given in terms of the so called anisotropy constants (e.g. K1 and K2).
Apart from being an important parameter in micro–magnetic models, a deeper
insight about the MAE, which shows the directions in the crystal which are easy
and hard magnetization directions, is important knowledge in itself. This is not
least due to the possibility of designing new materials which are optimal for
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information storage. Let us illustrate this statement with an example. A small
fraction of a magnetic disc with the magnetic moment pointing in one direction
may be thought of as representing a 0 in a binary code whereas another section
with a reversed moment direction would represent a 1. It becomes important to
have the directions well defined, and as a consequence materials with an optimal
MAE are searched for. Recently a lot of attention has been focused on orbi-
tal magnetism, 〈Lz〉, of itinerant electron systems, especially since it has been
observed that there may be a connection between orbital magnetism and the
magneto–crystalline anisotropy (MAE) [3]. As will be argued below, this means
that one avenue to find a material with a large MAE is to search for a large
orbital moment. At least materials which have a large directional dependence
(anisotropy) of the orbital moment are expected to have enhanced MAE [3].
This chapter deals with theoretical aspects of the MAE of transition metals,

its relation to important parameters such as the crystal structure, spin and or-
bital moments, electronic structure and hybridization with possible neighboring
atoms. Although several examples of bulk, surfaces and interfaces will be given,
this chapter is by far not complete and should not be viewed as an overview
of the subject. It is merely intended to illustrate ideas, give understanding and
to show ways to think about the MAE. In this chapter we shall thus outline
how one can calculate the orbital moment of an itinerant electron system. We
also point out that most of the discussion in this chapter deals with elements
and compounds where the magnetism is provided by itinerant electrons, elec-
trons which occupy band states that have dispersion (an example of this is bcc
Fe). This is in contrast to localized electrons which are atomic like, even in the
crystalline environment (an example is hcp Gd, a rare earth element). Calcula-
tion of the MAE requires resolving the difference in total energy (which often
is of the order of several thousands of Ry) when the magnetization is pointing
in two different directions of the solid, with a requirement of accuracy some-
times better than 1 µRy. It is the purpose of this chapter to outline some of
the techniques used at present and to give a few examples of the theoretical
modeling of magnetism of solids by means of first principles calculations. This
chapter begins by reviewing the most important parts of the basis of modern
electronic structure theory, namely Density Functional Theory (DFT) [4,5] and
the approximations which make it useful for calculations, i.e. the Local Density
Approximation (LDA) and the Generalized Gradient Approximation (GGA).
The latter two approximations give rise to explicit but approximate expressions
of the total energy of a material. At this point we would like to draw attention
to the fact that there exist textbooks dealing with this topic; for a more detailed
study of DFT, LDA and GGA we refer the reader to Dreitzler and Gross [6], and
Eschrig [7]. There are also good review articles on this such as Gunnarsson and
Jones [8], and Callaway and March [9]. We will also describe in some detail one of
the many methods which exist for calculating the electronic structure and total
energy of a solid or a surface, a basis function method based on so–called linear
muffin–tin orbitals (LMTO). There are already detailed descriptions of methods
for calculating the electronic structure of a solid based on linear muffin–tin or-
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bitals [10–12]. However the method outlined here makes fewer approximations
and is more accurate. In achieving this there are obstacles which must be over-
come which have not been described before, we will try to point these out and
compare with the previous methods [10–12]. We would also like to mention that
detailed descriptions of other computational methods, such as the Augmented
Plane Wave (APW) method of Slater [13] and the modified, linearized version
of it (LAPW) by Andersen [10], can be found in Ref. [14] and [15], respectively.
Another computational method which calculates the LDA or GGA total energy
is based on the so called Linear Combination of Atomic Orbitals (LCAO), or-
bitals which may be recognized from text books on chemistry and physics of
molecules [16]. The LCAO method is described in detail in Refs. [17] and [18]
and in addition calculations of the electronic structure of a variety of elements
[19] and compounds [20] have been compiled in book form.

2 Introductory Remarks on Electronic Structure Theory

All theories for calculating the magnetic properties and the total energy of solids,
surfaces and interfaces start out by adopting the Born–Oppenheimer approxima-
tion. This approximation simply neglects the movement of the atomic nuclei and
the electrons are considered to be moving around in a material where all nuclei
are at fixed positions. The motivation for this is that the electrons are much
lighter than the nuclei and thus move much faster. For the materials discussed
in this chapter, where the lightest element studied belongs to the 3d series, this
approximation is a very good one. One can now focus solely on the electrons,
which in itself is a formidable problem. The electrons interact with the positive
atomic nuclei and with each other electrons via Coulomb forces. Although the
former interaction is by no means simple it can be treated, whereas the latter
interaction is impossible to calculate and one must resort to approximations.
Attempts to estimate the electron–electron interaction in solids in order to

calculate the electronic dispersion of solids or the total energy of them dates back
to the days of the Thomas–Fermi model [21], the Hartree approximation and to
the X–α method of Slater [13]. An extension of these ideas culminated in what
we today know as Density Functional Theory (DFT) [4,5]. As we will see below
this has made it possible to calculate the total energy of for instance a solid,
using the electron density, n(r), as the key variable (n(r)=n↑(r)+n↓(r)) where
n↑(r) is the spin up electron density and n↓(r) the spin down electron density).
For magnetic systems one has also to consider the magnetization density, m(r)
(m(r)=n↑(r)-n↓(r)), and examples will be given in this chapter of calculations
based on DFT where the total energy and the magnetic properties of a solid are
successfully reproduced.
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3 Density Functional Theory

3.1 The Hohenberg–Kohn Theorem

Let us start the description of the basic ideas of DFT by considering a non–
magnetic system with spin degeneracy1, the spin polarized case will be discussed
later. It is now our purpose to prove the two theorems that are the basis of DFT.

Theorem 1. The total energy of a system is a unique functional of the ground
state electron density.

To demonstrate this we consider a Hamiltonian, H = T + V +W , where T
represents the kinetic energy of the system, V the interaction of the electrons
with an external potential (normally this is the potential given by the atomic
nuclei in the solid) andW the (exact but complex) electron–electron interaction.
The solution to this Hamiltonian results in a ground state many body wave
function Ψ(r1, r2, ....rN ) (for N electrons), and we have

HΨ = EgsΨ. (1)

The electron density can now be calculated from

n(r) =
∫
d3riΠ

N
i=1 | Ψ(r1, r2, ....rN ) |2 δ(r − ri) (2)

and the interaction V is written as V=
∫
n(r)v(r)d3r, where v(r) is the external

potential. We will now demonstrate that two different external potentials v(r)
and v′(r) must give rise to different ground state electron densities. To show this
we note firstly that for the system with potential v′(r) we have

H ′Ψ ′ = E′
gsΨ

′. (3)

From the variational principle it follows that

Egs = 〈Ψ | H | Ψ〉 < 〈Ψ ′ | H | Ψ ′〉. (4)

By adding and subtracting v′(r) on the rhs. of (4) we obtain

〈Ψ ′ | H | Ψ ′〉 = 〈Ψ ′ | H ′ + V − V ′ | Ψ ′〉 (5)

= E′
gs +

∫
n′(r)(v(r)− v′(r))d3r.

Combining the expressions in (4) and (5) gives,

Egs < E
′
gs +

∫
n′(r)(v(r)− v′(r))d3r. (6)

1 A more elaborate discussion of the contents of this chapter may be found in the text
book by Dreitzler and Gross [6].
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A similar argument starting from the expression

E′
gs = 〈Ψ ′ | H ′ | Ψ ′〉 < 〈Ψ | H ′ | Ψ〉, (7)

results in

E′
gs < Egs +

∫
n(r)(v′(r)− v(r))d3r. (8)

We will now show that if we assume that n′(r) = n(r) an absurd result emerges
and hence this assumption must be wrong, i.e. n′(r) �= n(r). The absurdity comes
from the fact that if (6) and (8) are added and one assumes n′(r) = n(r) one
obtains the equation

Egs + E′
gs < E

′
gs + Egs, (9)

which is clearly wrong. Hence n′(r) �= n(r) and we conclude that knowledge
of the electron density, n(r), implies that we know it was calculated from a
Hamiltonian with an external potential v(r) (since we just showed that v(r) and
v′(r) give rise to different densities n(r) and n′(r)). As the kinetic energy, T ,
and electron–electron interactions,W , are known and specified we conclude that
knowledge of the ground state electron density determines the entire Hamiltonian
and hence the ground state energy, which proves Theorem 1 (although an explicit
and practical form for calculating Egs from n(r) is not clear from the arguments
given above). One can thus express a functional relationship between the ground
state energy and the corresponding electron density as

E[n(r)] = T [n(r)] + V [n(r)] +W [n(r)]. (10)

Since the arguments that lead to this relationship do not depend on the form of
v(r) (and hence is valid for atoms, molecules and solids) the kinetic energy and
electron–electron interaction T +W ≡ F [n(r)] is called a universal functional of
the electron density.
A second important theorem of DFT is

Theorem 2. The exact ground state density minimizes E[n(r)].

This statement partly follows from the fact that the many electron wave
function is also specified by the electron density [6], since the ground state density
specifies the Hamiltonian and hence also the wave function (of the ground state
and of excited states), and to illustrate this dependence we write Ψ [n(r)]. To
prove Theorem 2 we next note that for a given external potential v0(r) we can
from Theorem 1 write

Ev0 [n(r)] =< Ψ [n(r)] | T +W + V0 | Ψ [n(r)] >, (11)

where the subscript v0 indicates that this is the energy functional for a system
with external potential v0(r). If we now denote the ground state electron density
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by n0(r) we can express the ground state as Ψ [n0(r)]. From the variational
principle we again obtain

〈Ψ [n0(r)] | T +W + V0 | Ψ [n0(r)]〉 <
〈Ψ [n(r)] | T +W + V0 | Ψ [n(r)]〉, (12)

which can also be expressed as

Ev0 [n0(r)] < Ev0 [n(r)], (13)

i.e., the ground state density minimizes the energy functional E[n(r)], which is
what Theorem 2 states. If we now had an explicit form for E[n(r)] we could go
ahead and minimize it with respect to the electron density and in this way calcu-
late the ground state energy. Unfortunately one must resort to approximations
to obtain an explicit expression for E[n(r)], due to the complexity provided by
the electron–electron interactions. We will outline such approximations in the
next section but before we do this we note that the arguments above can also
be repeated for spin polarized systems and one may show that the ground state
energy is a unique functional of the electron and magnetization density. The
proof of this is quite similar to the proof outlined above, and we start out by
modifying the Hamiltonian to include an external magnetic field, B(r), so that
we have H = T +W + U , where U=

∫
v(r)n(r)−B(r)·m(r) d3r. Based on the

variational principle we may, analogous to the discussion around Eqns.4-6, arrive
at

Egs < E
′
gs +

∫
n′(r)(v(r)− v′(r))d3r −

∫
m′(r)(B(r)− B′(r))d3r (14)

and

E′
gs < Egs +

∫
n(r)(v′(r)− v(r))d3r −

∫
m(r)(B′(r)− B(r))d3r. (15)

If we again assume that n(r) = n′(r) andm(r) =m′(r) and add (14) and (15) we
arrive at the same absurd result as in the discussion of spin degenerate systems,
i.e. (9), and we must draw the conclusion that n(r) �= n′(r) and m(r) �= m′(r).
Hence we may conclude that for magnetic systems we can write the ground
state energy as a unique functional of the electron density and the magnetization
density.

3.2 The Kohn–Sham Approach

The theorems described above are also valid for non–interacting electron systems
where the part of the Hamiltonian describing electron–electron interactions, W ,
is absent. In this case electrons which move in the field of an external potential
which, we for reasons that will be obvious below, call Veff, are solutions to a
one–electron Schrödinger equation,

[
−∇2

2
+ Veff]ψi = Eiψi. (16)
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There is an infinity of solutions to this equation and to specify a special solution
the subscript i is introduced. From (16) one can calculate an electron density
from the lowest lying one–particle (op) states. If there areN electron states which
are solutions to (16) one simply calculates the one-particle (a label introduced
to show that there are no electron–electron interactions considered) electron
density from

nop(r) =
N/2∑
i=1

2 | ψi(r) |2, (17)

where the factor 2 comes from spin degeneracy. In this case the energy functional
which describes the total energy of the N electrons may be written as,

Eop[nop(r)] ≡ Top[nop] + Veff[nop] ≡
N/2∑
i=1

〈ψi(r) | −∇2

2
| ψi(r)〉

+
∫
nop(r)Veff(r)d3r, (18)

and the electron density which minimizes this functional is obtained from the
requirement that the energy functional is stationary for small variations of the
electron density around the ground state density. This can be written as,

0 = δEop = Eop[nop(r) + δnop(r)]− Eop[nop(r)], (19)

which may also be written as

0 = δTop[nop] +
∫
δn(r)Veff(r)d3r. (20)

Carrying out the minimization in (20) leads to (16), and we have demonstrated
that independent particles which are the solution to (16) give rise to a density
which minimizes the total energy expression of independent particles in (18).The
reason for introducing (16) to (20) is mainly that they can be solved, at least
approximately, to within a desired accuracy (this is the topic of the next subs-
ection), but at this state it is unclear if equations (16) to (20) have anything
to do with a ‘real’ interacting system. However, as will be clear in a moment
they can, via the Kohn–Sham approach, be used to actually calculate the ground
state energy of a ’real’ electron system. The basic principle of the Kohn–Sham
approach is now to assume that one can find an effective potential, Veff, so that
nop(r)=n(r), where n(r) is the electron density of the fully interacting (‘real’)
system. Since we know that the total energy of a system is uniquely determined
by the electron density it seems to be an efficient route to obtain the correct
electron density from a one–electron like problem, in our ultimate quest of cal-
culating the ground state energy of a solid.
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The question now is how to determine Veff, so that nop(r) becomes equal to
n(r). To do this we recast the energy functional in (10) as

E[n(r)] = Top[n(r)] +
∫
n(r)v(r)d3r (21)

+
1
2

∫ ∫
e2
n(r) · n(r′)
| r − r′ | d

3rd3r′ + Exc[n(r)].

Since we require that nop(r) should be equal to n(r) we have in the expression
above, for simplicity, skipped the subscript op on the electron density of the right
hand side. In (21) we have introduced the one–particle kinetic energy functional
instead of the true kinetic energy functional of (10) and we have introduced the
Hartree electrostatic interaction instead of the true electron–electron interac-
tion. Hence in order to make (21) equal to (10) we must introduce a term that
corrects for these replacements, and this is what the exchange and correlation
energy, Exc[n(r)], does. Since the first three terms on the right hand side of (21)
are possible to calculate numerically we have moved the complexity of the fully
interacting system to finding the exchange and correlation functional. So far it
has been impossible to find the exact exchange and correlation functional so that
(21) holds for all densities and all systems. However, for a uniform electron gas
one can calculate Exc[n(r)]2 for all values of the electron density and parame-
terized forms of Exc[n(r)] as a function of n(r) is available. The local density
approximation assumes that these parameterizations work even in cases where
the electron gas is not uniform, but varies is space, as it does in a solid, surface
or interface. The local density approximation introduces the following expression
for the exchange-correlation energy [6],

Exc[n(r)] =
∫
εxc[n(r)]n(r)d3r, (22)

where εxc[n(r)] is named the exchange–correlation energy density and in a para-
meterized form its dependence on n(r) is relatively simple and may, for example,
be found in Ref. [6]. We are now armed with an (approximate) expression for the
ground state energy functional and in analogy with (19) and (20) we determine
the ground state density from this functional by requiring that the functional
(equation (21)) is stationary for small variations of the electron density around
the ground state density. By doing this we obtain an expression which is quite
similar to (20), i.e. we obtain

0 = δTop[n] +
∫
δn(r)[v(r) +

∫
e2

n(r′)
| r − r′ |d

3r′ +
∂(εxc[n(r)]n(r))

∂n(r)
]. (23)

2 This can be done in the high electron density limit [22] and in the low electron density
limit [23]. Interpolation between these two limits gave rise to parameterized forms of
the exchange and correlation functional of a uniform electron gas for all values of the
density [23]. However, this interpolation is in modern electronic structure calculations
replaced by approaches which are based on quantum Monte–Carlo simulations for
the intermediate values of the electron gas [24].
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We have now achieved our goal in finding the effective potential which (within
the approximations and assumptions introduced) ensures that nop(r)=n(r), since
when we compare (20) and (23) we can identify Veff as,

Veff(r) = v(r) +
∫
e2

n(r′)
| r − r′ |d

3r′ + µxc(n(r)), (24)

where

µxc(n(r)) =
∂(εxc[n(r)]n(r))

∂n(r)
= εxc[n(r)] + n(r)

∂(εxc[n(r)])
∂n(r)

. (25)

All we have to do now is to solve (16) with the effective potential specified by
(24). Since the effective potential to be used in (16) depends on the electron
density, the property we want to calculate, one has to perform a self–consistent
field calculation (SCF) where an initial electron density is more or less guessed
and an effective potential is calculated from (24). This potential is then used
to solve (16) and a new electron density is calculated from (17), which is then
put back into (24). This procedure is repeated until convergence is obtained, i.e.
until the density does not change appreciably with successive iterations3. Once
a self–consistent electron density has been found one can calculate the ground
state energy of the Kohn–Sham (LDA) energy functional (via (21)) and hence
one of the main goals in electronic structure calculations has been achieved.
Before entering the details of how one might solve the self consistent Kohn–

Sham equations, (16) and (17), we note that the entire procedure outlined above
can also be made to work for magnetic systems. At the end of the previous
section we concluded that for magnetic systems the ground state energy may be
written as a unique functional of the electron density and of the magnetization
density. An alternative way of expressing this is to state that there is an energy
functional which depends both on the majority and the minority spin density
(since n(r) = n↑(r) + n↓(r) and m(r) = n↑(r) − n↓(r)4) and we can write
E[n↑(r), n↓(r)]. We can then make an analogous assumption to the discussion
around (21) and obtain a Kohn–Sham scheme for spin polarized systems via,

E[n↑(r), n↓(r)] = Top[n↑(r), n↓(r)] +
∫
n(r)v(r)d3r (26)

+
1
2

∫ ∫
e2
n(r) · n(r′)
| r − r′ | d

3rd3r′ + Exc[n↑(r), n↓(r)].

3 Normally one is forced to mix the electron density which is the output of (17) with
the electron density which is in input for that particular loop in the SCF iteratio-
nal procedure before one takes this mixed density and puts it in (24). The whole
procedure of mixing is quite complex where many suggestions of how to achieve self
consistency with as few iterations as possible have been suggested [25].

4 We note here that this approach has simplified the situation somewhat since the
magnetization density is a scalar property with both magnitude and spin. In this
analysis we are assuming that the magnetization is pointing only in one direction,
the z–direction, of the system.
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In a real solid the preference for occupying one spin channel (to some degree)
more than the other is traditionally explained as due to the exchange interaction
and the driving force for it is the electron–electron interaction in the Hamilto-
nian. Hence in the spin polarized Kohn–Sham scheme this necessarily means
that the exchange and correlation potential, which is supposed to absorb all
complex electron–electron interactions, must depend both on the charge and the
spin (magnetization) density. Turning again to studies on the uniform electron
density is useful and parameterizations for Exc[n↑(r), n↓(r)], as a function of
n↑(r) and n↓(r), have been made. We can now proceed quite analogously to the
discussion around (16) and (17) and analyze a one particle Hamiltonian with
spin up (down) effective potentials,

[
−∇2

2
+ V ↑(↓)

eff ]ψ↑(↓)
i = E↑(↓)

i ψ
↑(↓)
i , (27)

where the electron density for electrons with a given spin is obtained from,

n↑(↓)
op (r) =

∑
i=1

| ψ↑(↓)
i (r) |2 . (28)

Repeating the discussion which led to (24), with the only modification that we
now require the energy functional to be stationary with regard to both the spin
up and the spin down density, leads to effective potentials which are different
for the two spin directions due to differences in the exchange and correlation
potential,

V
↑(↓)
eff (r) = v(r) +

∫
e2

n(r′)
| r − r′ |d

3r′ + µxc(n↑(r), n↓(r)). (29)

Hence the simplest forms5of spin polarized calculations treat the spin up and
spin down electrons separately and for every iteration in the self–consistent loop
one solves a Kohn–Sham equation for both spin directions. The spin up and spin
down densities are then calculated by occupying the N lowest (spin up or spin
down) eigenvalues of the separate two Kohn–Sham equations. Since for a given
V ↑
eff(r) which may be different from V ↓

eff(r) there may be more spin up states, E
↑
i

than spin down states, E↓
i , which have an energy lower than the highest occupied

state (the Fermi level-EF) it is clear how spin polarization might occur. With a
self consistent spin and magnetization density the magnetic moment is calculated
as

∫
m(r)d3r (in Bohr magneton units) and the total energy may be calculated

from (26).

4 Solving the Kohn–Sham Equations: Bulk

We have shown in the previous subsection that the equations to be solved for
calculating the magnetic properties of a solid from first principles are (27)–
(29). Before entering the details of one of the most used methods, the Linear
5 We will discuss below, in connection to the section about orbital moments and rela-
tivity, complications which makes this scheme somewhat more involved.
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Muffin–Tin Orbital (LMTO) method, we note that due to the symmetry of bulk
materials a number of simplifications evolve. This discussion can also be found
in, for instance, the textbook by Ashcroft and Mermin [26].
First of all one normally assumes in a bulk material that the potential which

enters (27) is periodic, i.e. V ↑(↓)
eff (r) = V

↑(↓)
eff (r+R), where R is a translation

vector ( a Bravais lattice vector) of the solid. This periodic boundary condition
leads to Bloch’s theorem [26] which states that as an effect of the periodicity
of the bulk material the one–electron wave function must obey the following
condition,

ψ
↑(↓)
i,k (r+R) = eik·Rψ↑(↓)

i,k (r), (30)

and we note that a vector k has been introduced. This is a vector of reciprocal
space6 and due to the translation symmetry one has only to consider k–vectors
which lie inside the first Brillouin zone when looking for solutions to (27)–(29)
[26]. In addition one can solve the (27)–(29) for each k–vector being separate and
independent of the others. However, the dependence of the one–electron wave
function on k makes the calculation of the one–electron density somewhat more
complex since we have to include a sum over all possible k–vectors, and (28) is
in a crystal replaced by

n↑(↓)
op (r) =

∑
i

∑
k

| ψ↑(↓)
i,k (r) |2 . (31)

In a similar way one often needs to sum all the possible Kohn–Sham eigenvalues
Ei (equation (16)) to be used for calculating the total energy, (26). This is
needed since one often writes, Top = Esum −

∫
veff(r)n(r)d3r). The sum of the

eigenvalues, Esum, is often referred to as the eigenvalue sum and it is calculated
from

Esum =
∑

i

∑
k

Ei,k. (32)

In principle all k–vectors inside the first Brillouin zone should be considered in
the sums above, but since this number is enormous one would like to replace
the sum with an integral. However, if one does not have an analytic dependence
of, for instance, Ei of k, we must find ways to approximate (32). In order to do
this it is useful to introduce the concept of density of states, DOS. A derivation
of the DOS may be found in most textbooks on solid state physics and it is not
repeated here. Instead we quote the result, that the DOS can be calculated from,

D(E) =
∑

i

1
8π3

∫
BZ

δ(E − Eik)d3k. (33)

6 Reciprocal space is spanned by the vectors Gi, defined as Gi · Rj = 2πδij , where V
is the volume of the primitive cell of the Bravais lattice.
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With this definition of the DOS one can calculate the eigenvalue sum from

Esum =
∫ EF

−∞
ED(E)dE. (34)

4.1 Different Types of k-Space Integration

Having defined the DOS in (33) and the eigenvalue sum, in (34) we are now
ready to discuss different ways to approximate the integral over the Brillouin
zone (BZ), which is necessary in numerical methods where one does not have an
analytical expression of Eik. First we write the eigenvalue sum as,

Esum =
∑

i

∫ ∞

−∞
Ef(E)

1
8π3

∫
BZ

δ(E − Eik)d3kdE, (35)

where f(E) is a step function which attains the value one below the Fermi energy
and zero above. Esum is numerically very sensitive to the k–point sampling and
the choice of numerical method to perform the Brillouin–zone integration, BZI.
We will discuss three different BZI schemes [27]. In all three cases a uniform
mesh of k–points is used, distributed as to fulfill the symmetry of the space–
group. The BZI can in all three cases be written as weighted sums over the
bands, i, and the discrete set of sampled k–points, kj , with weight functions,
wji. In the so–called linear tetrahedron method [28], LTM, the uniform mesh is
divided into corner–sharing tetrahedra. A linear interpolation of the eigenvalues
is performed between the k–points belonging to one tetrahedron, resulting in a
weight function wji. The step function is used directly by using EF as an upper
limit in the energy integration. A modification of the linear tetrahedron method,
MTM, was suggested by Blöchl et al. [29] In the MTM the linear weights, wji,
are corrected by, dwij=

∑
T

1
40DT (EF)

∑4
l (Eil−Eij), where T is an index for the

tetrahedra and l is an index for the k–points at the corners of the tetrahedron
T . DT (EF) is the contribution to the density of states from the tetrahedron T at
the Fermi level and Eij is the ith eigenvalue of the jth k-point belonging to the
tetrahedron T . The MTM corrects for the curvature of the energy band to leading
order. Another way to perform the BZI is to use a Gaussian broadening method,
GBM, which convolute each discrete eigenvalue with a Gaussian function of
width W. This method and the related Fermi-Dirac broadening method are very
popular in total energy methods since they lead to a fast and stable convergence
of the charge and spin densities. The GBM can be seen as a truncation of a
complete series expansion of a δ–function in terms of Hermite polynomials, Hn,
with a Gaussian weight function [30]. Then the step function, f(E), can be
written as

f(E) = f0(E,W ) +
∞∑

n=1

AnH2n−1(
E − EF

W
)e−( E−EF

W )2 , (36)
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Fig. 1. Calculated total energy of fct Ni as a function of the number of k–points use
for sampling the BZ. Three different sampling techniques were used, LTM, MTM and
GBM (see text).

where f0(E,W ) = 1
2 (1− erf(E−EF

W )) (erf stands for error function) and An are
coefficients which may be calculated analytically. In practical calculations one
has to truncate the sum in the equation above and the resulting “step” function
is called fN (E;W ), if N terms are kept in the sum. If the function which is
“smeared” by fN (E;W ) (for instance the DOS times the energy – see equation
(34)) can be represented by a polynomial of 2N there is no error involved in the
truncation [30].
An example of how the different BZ integration methods work is show in Fig.

1 where the total energy of fct Ni (c/a ratio of 0.945) is presented as a function of
the number of k–points in the irreducible wedge of the BZ [31]. The calculations
were based on a full–potential linear muffin–tin orbital method, described in the
next section. Note from Fig. 1 that the LTM converges much slower than the
MTM and GBM. Notice also that the GBM does not converge to the same value
as the other two methods which seem to converge to the same value. This is due
to the fact that in the GBM the sum over Hermite polynomials is truncated,
resulting in an approximate step function. However, the error in the energy
differences is much smaller [31,32].

4.2 The FP–LMTO Method

We have outlined above a number of concepts which appear due to the trans-
lational symmetry of a solid, i.e. the Kohn–Sham equation must be solved for
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a number of k–vectors which, for a given cycle in the self consistent loop, may
be treated as independent of each other. In addition one has to find ways to
approximate the k–space summation of the electron states and we have given
examples of how one may do this. We are now ready to tackle the toughest part
of the problem, namely to solve (27). One approach is to expand the (unknown)
one–electron wave function in a set of (known) basis functions as,

ψi,k(r) =
lmax∑

l

clikχlk(r). (37)

The sum in the equation above is truncated after sufficiently many basis fun-
ctions have been included and the coefficients clik are, via the Rayleigh–Ritz
principle [16], determined from the following secular equation,

lmax∑
l

[Hll′ − EikOll′ ]clik = 0, (38)

where

Hll′ =
∫
Uc

χlk(r)[
−∇2

2
+ V ↑(↓)

eff ]χl′k(r)d3r ≡
∫
Uc

χlk(r)heffχl′k(r)d3r (39)

and

Oll′ =
∫
Uc

χlk(r)χl′k(r)d3r, (40)

where the integral is over the unit cell (Uc). Once Hll′ and Oll′ have been eva-
luated the eigenvalues, Eik (i = 1− lmax), are determined by [16]

det |Hll′ − EikOll′ | = 0, (41)

a standard numerical problem, which may be solved by existing software.

4.3 Defining the LMTO Basis Functions

The difficulty is now to choose a basis set which is flexible and converges fast, i.e.
as few basis functions as possible are needed to represent with sufficient accuracy
a given eigenfunction, ψi,k(r). One efficient basis set is comprised of so called
linear muffin–tin orbitals [10], which may be used in a full–potential mode, as
described by Wills [33] or with the use of the atomic sphere approximation [10].
Both these methods are reviewed in other chapters of this book[34,35], hence we
give only some of the details here.
Let us note here that the FP–LMTO method is defined using a base geo-

metry, which is the usual construction of muffin–tin spheres centered around
the atoms and a region outside these spheres, called the interstitial region. In
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the muffin–tins, the basis functions, electron density, and potential are expan-
ded in spherical waves, whereas in the interstitial, the basis functions, elec-
tron density, and potential are expanded in Fourier series. The calculation of
the Hamiltonian and overlap matrix elements thus involves replacing the in-
tegrals in (39) and (40) with two parts, one coming from the muffin–tins and
one coming from the interstitial. To be specific we break up integrals of f(r) as∫
Uc
f(r)d3r =

∫
MT f(r)d

3r +
∫
Int f(r)d

3r.
The basis functions used in the LMTO method are best described as augmen-

ted (or rather, inside the muffin–tin spheres, replaced) Bessel functions. These
functions are described mathematically as,

K�(κ, r) ≡ −κ�+1

{
n�(κr)− ij�(κr)κ2 < 0
n�(κr)κ2 > 0

(42)

KL(κ, r) ≡ K�(κ, r)YL(r̂) (43)

JL(κ, r) ≡ J�(κ, r)YL(r̂) (44)

J�(κ, r) ≡ j�(κr)/κ� (45)

In the equation above we have used,

Y�m(r̂) ≡ i�Y�m(r̂) (46)

C�m(r̂) ≡
√
4π
2
-
+ 1 Y�m(r̂) (47)

C�m(r̂) ≡ i�C�m(r̂), (48)

where Y is a spherical harmonic.

4.4 The Muffin–Tin Matrix Element

The evaluation of matrix elements over the muffin–tin region requires a mathe-
matical description of the basis function used in this part of the crystal. In case
the effective potential in (24) is a constant (a purely hypothetical situation) the
eigenfunctions can be written as plane waves or as a linear combination (a so
called Bloch sum) of spherical Hankel or Neumann functions. To be specific the
expression is (for a mono–atomic solid)

χL(k, r) =
∑
R

eik·RK�(κ, |r − R|)Y�m(r − R), (49)
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where K is a basis function defined in (42). Since part of the crystal has an
effective potential which is rather constant, and does not vary much (in the
interstitial) it is meaningful to use the above quoted functions as basis functions
in the interstitial region. However, before describing how these functions are used
to calculate (39) and (40) let us first deal with the muffin–tin region. We first
note that (49)

χL(k, r) =
∑
R

eik·R ∑
L′

YL′(r̂) [K�′(κ, sτ )δ(R, 0)δ(L,L′) (50)

+JL′(κ, s)BL′,L(κ,R), ]

can be rewritten inside a muffin–tin sphere at R=0 as a multi–pole expansion
which yields,

χL(k, r) =
∑
L′

YL′(r̂)(K�′(κ, s)δ(L′,L) + JL′(κ, s)BL′,L(κ,k)). (51)

This function is continuous and differentiable at the muffin–tin spheres. Since
the effective potential around the nuclei, inside the muffin–tins, is more or less
spherically symmetric and atomic like an efficient choice of basis set is to replace
the Bessel and Neumann functions in (50) with numerical functions that are
solutions to a Kohn–Sham like differential equation. However, the numerical
functions are only determined inside the region where the effective potential is
close to being spherical, i.e. inside the muffin–tins. They are calculated from
Ψ = aψ + bψ, where (hspherical

eff − εν)ψ = 0 and ψ is the energy derivative of ψ.
The constants a and b are determined to ensure continuity and differentiability.
Hence the Bessel and Neumann functions are replaced, in a continuous and
differential way, with numerical functions. The basis function to be used in the
muffin–tin region is then,

χL(k, r) =
∑
L′

YL′(r̂)(Φ�′(κ, sτ )δ(L′,L) + ΦL′(κ, s)BL′,L(κ,k)). (52)

With this basis function, matrix elements of the Hamiltonian and overlap can
be evaluated over the muffin–tin region. Added to each such matrix elements is
then the contribution from the interstitial region, which is described next.

4.5 The Interstitial Matrix Element

The basis function in the interstitial region is described by (49). However, since
it has been found to be efficient to represent the effective potential and charge
density as Fourier series, it becomes computationally efficient to make use of a
Fourier series also for the basis function. This is possible since a basis function
to be used in a crystalline environments can be written as a periodic function
multiplied with a plane wave, and one can of course express the periodic function
in a Fourier series. Hence one makes use of,

χL(k, r) =
∑
G

χGei(k+G)·r, (53)
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in the interstitial region from which the interstitial contribution to the Hamil-
tonian and overlap matrix elements are evaluated. Since the potential in the
interstitial region is represented as a Fourier series the evaluation of the matrix
element of the Hamiltonian (and the overlap) becomes relatively simple, invol-
ving a sum of Fourier components. In practice it becomes faster to perform this
integral via a combination of inverse Fourier transforms and Fourier transforms,
which is not described here.

5 Magneto–Crystalline Anisotropy of Selected Materials

5.1 General Remarks

In the remaining part of this chapter we will give examples of how the theories
outlined above can be used to calculate the magneto–crystalline anisotropy, as
well as spin and orbital moments. However, before entering the details of this
section which describes the magneto–crystalline anisotropy (MAE) as well as
spin and orbital moments of selected materials, it should be mentioned that van
Vleck pointed out, already in 1937 [36], that the spin–orbit interaction is res-
ponsible for the coupling of the spin to the lattice, which then gives rise to a
magnetic anisotropy in a magnetic solid. Hence, much of the physical understan-
ding of the mechanisms behind the MAE of 3d elements have been known for a
long time. Actual calculations of the MAE have been thwarted because efficient
methods for solving the Kohn–Sham equations, in combination with fast com-
puters, are only recently available. Pioneering and important work in the field of
MAE was also made by Brooks [37] and Kondorsii and Straub [38] where techni-
cal details of, for instance, problems with BZI were analyzed. We are interested
here in the electronic contribution to the MAE, provided by the coupling of spin
and orbital angular momenta, via the spin–orbit coupling. There is also another
contribution to the MAE which is called the shape anisotropy (described in the
following section). However, in the theoretical description of the MAE below we
shall focus on the contribution given by the spin–orbit coupling. Hence, when
comparing theory and experiment we have, unless otherwise explicitly stated,
removed the shape anisotropy from the experimental data.

5.2 Shape Anisotropy

The shape anisotropy results from the magnetic dipole interaction. To calculate
it we can consider a lattice of magnetic dipoles with magnetic moment µi. The
energy of the dipole interaction can be written as [2] Edipole = − 1

2

∑
i µi· hi,

where hi is the field intensity at lattice point i due to all the other dipoles. This
interaction can be written as [39,40],

Edipole = 1
c2

∑
i �=i′ [ µi·µi′

|Ri−Ri′ |3 (54)

−3 (µi·{Ri−Ri′ })(µi′ ·{Ri−Ri′ })
|Ri−Ri′ |5 ],
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where Ri is a vector describing the lattice point i. Due to the long range nature
of the magnetic dipole interaction the sum in (55) depends on the shape of the
sample, and this leads to the shape anisotropy. For thin films, for instance, it
always favors in–plane moments.

5.3 Orbital Moments and Orbital Polarization

An important part of magnetism, especially when considering the MAE, is the
orbital contribution to the magnetic moment. Just as the spin moment can be
written as the expectation value of sz using the wavefunctions in (37) one can
calculate the orbital moment from [41],

Lσ =
∑
ki

〈
ψσ

i,k(r) |lz|ψσ
i,k(r)

〉
. (55)

The expectation value in (55) is non–zero only if the relativistic spin–orbit cou-
pling is included in the calculation and if the spin degeneracy is lifted. Via the
spin–orbit interaction there is now a coupling between spin and orbital angu-
lar momentum and it is this interaction which is responsible for the electronic
contribution to the MAE. Hence the orbital moment and the electronic contri-
bution to the MAE have in common the fact that they both are a consequence
of the spin–orbit interaction and below we will show that one can sometimes
write an explicit relationship between the MAE and the orbital moment. From
the arguments above it is clear that any theoretical method which attempts to
calculate the MAE or orbital moment must consider the spin–orbit interaction.
This can either be done by solving the Dirac equation, by use of perturbation
theory, or to diagonalise a fully relativistic Hamiltonian using basis functions
from a non–relativistic Hamiltonian [10,42] (or more precisely scalar relativistic
Hamiltonian, since so–called scalar relativistic corrections such as mass velocity
and Darwin shifts [23] are normally included in most band structure methods
anyway). Using perturbation theory is more approximate than the other two
methods, which give almost identical results7. The latter finding in not too sur-
prising since the same relativistic Hamiltonian is considered, only the form of
the basis functions is different. Diagonalising a relativistic Hamiltonian with
scalar–relativistic basis functions has the advantage of being relatively easy and
scalar–relativistic codes may, without too much effort, in this way be modified
to include also the spin–orbit interaction. This can either be done in a straight
forward way [10,42], as will be described below, or by using the so–called se-
cond variation approach [45]. The basic principle in these two implementations
is however the same, and we describe only the first version here. If the effective
7 This was found for instance when comparing orbital moments of Fe, Co and Ni
calculated using these two different methods, but also by inspection of the DOS of
Pu [44], a very heavy element where the spin–orbit interaction is approximately 1
eV.
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Hamiltonian in (39) is augmented to include also the relativistic spin–orbit in-
teraction, hrelativistic

eff = hscalar
eff + ξl · s, (where ξ represents the strength of the

spin–orbit interaction) the secular equation in (38) is modified as follows,

lmax∑
l

∑
σ

[Hlσl′σ′ − EikOll′δσσ′ ]clσik = 0. (56)

In this equation matrix elements of the form

〈χlσk(r)σ |ξl · s|σ′χl′σ′k(r)〉

= 〈χlσk(r)σ |ξ (lxsx + lysy + lzsz)|σ′χl′σ′k(r)〉

=
〈
χlσk(r)σ

∣∣∣ξ (
l+s−+l−s+

2 + lzsz
)∣∣∣σ′χl′σ′k(r)

〉
, (57)

must be evaluated. Since the basis functions involve spherical harmonic fun-
ctions, spinors,σ, and a radial component, these matrix elements are rather
straight forward to calculate. Diagonalisation of (56) now yields eigenvalues
which are not pure spin states. Instead, the wave function of a given eigenvalue
is written as a linear combination of states with different l and σ character.

A practical complication of (57) is that the Hamiltonian matrix is doubled in
size, making the numerical diagonalisation procedure slower. A further compli-
cation of including both the spin–orbit coupling and a lifting of spin degeneracy
is that the symmetry (of the crystal) is reduced. Consider for example a cubic
crystal, such as bcc Fe. Normally there are 48 point group operations which
leaves the lattice invariant. However, if magnetism is considered and if the ma-
gnetization is coupled to the lattice via the spin–orbit interaction, the so–called
double group [46] has to be considered, and the effect of the time reversal opera-
tor has to be taken into consideration. If the magnetization of our cubic lattice is
pointing along the crystallographic z–axis we can, for instance, not perform a 90
degree rotation around the x- or y–axis, since the magnetization direction then
is rotated out from the z–axis and the system is not invariant. However, a 90
and 180 degree rotation around the z–axis is allowed. Also, a 180 degree rotation
around the x–axis flips the magnetization direction from the z–direction to the
z–direction and in itself such a symmetry operation is not allowed. However, the
product of this rotation and the time reversal operator (which changes the sign
of the magnetization) is an allowed operation and this element of the double
group does leave the crystal invariant. Our example of a cubic lattice when the
magnetization is pointing along the z–direction has 16 allowed symmetry opera-
tions. Hence, the lattice becomes tetragonal in symmetry, an effect which we will
discuss below in connection with calculations of magneto–striction. At present
we simply note that the reduced symmetry simply means that the irreducible
part of the BZ is larger, and that more k–points need to be sampled in order to
have a well converged total energy.
Since the spin–polarization (spin pairing) is treated via a spin–dependent

effective potential, such as (29), and the relativistic spin–orbit interaction is
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treated via (57), the physical mechanisms behind Hund’s first and third rules,
respectively, are (at least approximately) included. One can at this stage ask
the question why total energy calculations based on different approximations of
DFT ignore Hund’s second rule? The answer to this question is of course that
an exact formalism for including effects responsible for Hund’s second rule is
lacking at present. However, it has been pointed out [47] that an approximate
way to incorporate Hund’s second rule in total energy calculations, using DFT,
is to add to the LDA (or GGA) energy functional a term,

EOP = −1
2

∑
σ

E3
σL

2
σ. (58)

In this equation E3
σ is the so called Racah parameter (note that this parameter

is normally denoted B for d–electrons and E3 for f–electrons), which may be
calculated from Slater integrals; F 2, F 4 and F 6 [48,49]. The correction in (58)
is normally referred to as the orbital polarization (OP) correction. This form
for including electron–electron interactions comes from the finding that a vector
model, involving interactions of the form li · lj between electron pairs [50,51], can
be used to calculate the lowest energy multiplet. In fact an explicit expression
for electron–electron interactions having a term li · lj , is quoted both by van
Vleck [50] and Ballhausen [51]. This term in the electron–electron interaction
was also used by Norman et al. [52] to give a correction term which is similar to
the form in (58). Summing the interaction, li · lj , over electron pairs as well as
replacing the average of this interaction with the sum over average interactions,
lzilzj , gives rise to an expression for orbital correlations given by (58) [47]. The
approximation of replacing li · lj with the average is in the spirit of replacing the
spin pairing energy,

∑
i �=j si · sj , with a Stoner expression

∑
i szi

∑
j szj = S2

z .
Since this form of the energy is absent in the LDA or GGA energy functionals one
must add the energy of (58) to these total energy functionals. The interactions
which are responsible for Hund’s second rule, which in physical language are a
reflection of that states with different angular momentum have different angular
shape and hence a different Coulomb interaction, are now in an approximate
way included in the energy functional.
To illustrate the importance of (58) we show in Fig. 2 the energy correction

corresponding to (58) for the 4f electrons of the lanthanide atoms (or ions). Spe-
cifically Fig. 2 shows equation (58) neglecting the effect of E3, hence illustrating
only the angular behavior of the correction. The correction in (58) is compared
to the exact values [53], which are calculated from the energy difference between
the lowest atomic multiplet of the fn configurations and those corresponding to
the Grand Barry Centre (an average of the multiplets). This energy difference in-
volves of course also spin–pairing energy and spin—orbit interaction, but shown
in Fig. 2 is only the part which depends on the orbital angular momentum. To
get a feeling for how important the correction in (58) is, we note that for a
rare–earth system the value of E3 is ˜5 mRy which means that the correction
in (58) can be as large as ˜100 mRy. From Fig. 2 we note that the agreement
between the approximate form of the orbital part of the electron–electron inter-
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Fig. 2. Angular behavior of the electron–electron interactions of the f–elements, as
given by Nugent [53] and from equation (58).

action, given in (58), and the exact values given by Nugent [53] is rather good.
The largest disagreement is found for an f–occupation close to 1, 6, 8, and 13,
since the exact values should be zero here (there is for instance no spin- and
orbital pairing energy of a single electron), whereas the approximate correction
does yield a non–zero correction. This is analogous to the fact that LSDA gives
a spin–pairing energy of a single electron system.
The derivation of (58) was made having nearly localized electron systems in

mind [47] and for other systems other corrections should be tried. We have pre-
viously mentioned the corrections of Norman [52], but there is also a third form
suggested by Severin and co–workers [54]. We will not describe all the proposed
corrections in detail here, but instead quote some results of calculations using
(58), in order to illustrate the importance of these types of corrections, not only
for f–electron systems but also for d–electron systems and in particular for orbi-
tal magnetism. In Figs. 3 and 4 we show the calculated spin and orbital moments
[55], respectively, of Fe, Co and Ni, including alloys between these elements. The
calculations were using a standard LSDA calculation (with spin–orbit interac-
tion), as well as the correction in (58). In the figures experimental values are
also shown, and we note that an improved agreement between theory and expe-
riment is consistently found for the orbital moment, when the OP correction is
used. This is encouraging as well as reasonable, since the correction is supposed
to include an interaction which is present in an interacting electron system. In
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Fig. 3. Calculated and experimental values of the spin moments of the 3d elements,
Fe, Co and Ni, as well as for alloys between them.

addition we also observe that the orbital moments show a rather irregular beha-
vior and as discussed by Söderlind [55] this is due to band filling effects. Since
the size of the orbital moment is to a large degree caused by a redistribution of
electron states around the Fermi level, [56,57] it generally scales to some degree
with the value of the DOS at EF. Hence a large DOS at EF normally results in
a larger orbital moment and the irregular behavior of the orbital moment is to
some degree a reflection of an irregular behavior of the DOS at EF, for these
alloys. In addition the crystal symmetry is important since hcp Co is found to
have the largest orbital moment. It can be argued from perturbation theory that
for a cubic material the influence of the spin–orbit coupling strength, ξ, enters
as ξ4. For non–cubic materials the dependence is stronger, and this generally
results in larger orbital moments.

6 MAE of 3d Elements

6.1 Fe, Co and Ni

The first example of calculated MAE values which we would like to discuss is at
first glance the simplest, namely the MAE of the ferromagnets Fe, Co and Ni.
However, due to that the MAE is extremely small for these elements, at least for
bcc Fe and fcc Ni (of order µeV) the task of calculating this from first principles
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Fig. 4. Calculated and experimental values of the orbital moments of the 3d elements,
Fe, Co and Ni, as well as for alloys between them. Calculations with (OP) and without
(SO) the orbital polarization term are shown.

is enormously difficult, where especially a high accuracy of the computational
method is needed as well as a very dense sampling of the BZI. For this reason
different values of the MAE of bcc Fe, hcp Co and fcc Ni have been reported in
the literature. Some of the most recently calculated [58] values of the MAE are
listed in Table 1.

Table 1. MAE of Fe, Co and Ni in different crystal structures. All units in µeV. The
MAE is calculated as the difference between the axis: 001-111 for the bcc Fe, 001-100
for the hcp Co, 001-111 for the fcc Co and finally 001-111 for the fcc Ni.

MAE bcc Fe hcp Co fcc Co fcc Ni
ASA-force theorem [40] -0.5 16 - -0.5
ASA-total energy [60] -2.6 2.4 1.0
FP-total energy [58] -0.5 (-1.8) -29 (-110) 0.5 (2.2) -0.5 (-0.5)

experiment -1.4 -65 1.8 [59] 2.7

In the Table 1 we quote results obtained using the atomic sphere approxima-
tion (ASA) where spherical potentials in overlapping spheres are used to replace
the actual effective potential of the lattice (in equation (29)) in combination with
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Fig. 5. Calculated and experimental values of the MAE of bcc Fe (001 vs. 111 direc-
tion), hcp Co (0001 vs. 100 direction), fcc Co (001 vs. 111 direction) and fcc Ni.(001 vs.
111 direction). Calculations with and without the orbital polarization term are shown.

a minimal basis set. This approximation is estimated to give an error in each
calculated eigenvalue of a few mRy’s [10]. The full potential (FP) calculations
make no approximation to the shape of the charge– or spin density as well as the
shape of the effective potential (equation (29)) and as described above makes
use of a double or sometimes even a triple basis set. One may note from Table 1
that a variety of signs and sizes of the MAE may be obtained for Fe, Co and Ni,
depending on which approximation one uses. The calculations of Ref. [40] seem
to be well converged with respect to the number of k–points used, as do the cal-
culations of Ref. [60]. Since both these methods use the ASA the disagreement
in the MAE of bcc Fe and fcc Ni must be caused by the use of the so called force
theorem8 in Ref. [40]. This finding is consistent with the analysis of Ref. [62]
where it was argued that for cubic systems the applicability of the force theorem
may be limited. In the Table 1 we have quoted a value of 16 µeV for hcp Co,
using ASA and the force theorem. This actually corresponds to the wrong easy
axis. However, this value was obtained using an spdf basis set, whereas an spd
8 The force theorem [61] states that the total energy difference between two different
magnetization directions may simply be calculated from the difference in the eigen-
value sum of the the two magnetization directions, using the same effective potential
for the two directions. This approximation is correct to first order changes in the
charge and magnetization density.
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basis set gave a value of -29 µeV, i.e. the correct easy magnetization direction.
One can possibly draw the conclusion from this finding that the MAE of hcp
Co is hard to converge with a minimal basis set. Unfortunately no total energy
calculation using the ASA [60] was reported for hcp Co so that one can not
examine if the poor convergence in the number of basis functions is connected to
the use of the force theorem or not. The total energy, full–potential calculations
did report on convergence tests with respect to the number of k–points, the
width of the Gaussians used in the GBM for the BZI and the basis functions
used (however, mostly for Ni). In fact the convergence of the double basis set
(which is a standard size of the basis set of FP–LMTO calculations) was tested
by a calculation which adopted a triple basis set (i.e. three s basis functions,
three p basis functions and three d basis functions, each connecting to an enve-
lope function with a unique kinetic energy). Since the full–potential calculations
have the most flexible basis set as well as a more exact effective potential (29)
these results must be considered as the most accurate of the ones in Table 19.
If we now examine the MAE values of Table 1, using the full–potential method,
we find that the correct easy axis is found for all elements except fcc Ni. We
also note that including the OP influences the size of the MAE quite strongly,
as it did for the orbital moments in Fig. 4. In order to show this dependence
more clearly we compare in Fig. 5 different calculated MAE values (using the
FP–LMTO method) with experimental data. Note that for bcc Fe and fcc Co
including the OP correction improves the agreement with experiment, whereas
for hcp Co the experimental value is between the two different theoretical va-
lues.10 For fcc Ni the OP correction has a very small effect on the MAE and the
001 axis is calculated to be the easy axis, in disagreement with observations. As
we shall see below, where more examples are given, first principles calculations
normally reproduce the correct easy axis, even if the size of the MAE may de-
viate somewhat. The fact that first principles calculations, based on the LSDA,
are incapable of providing the correct easy axis for fcc Ni is probably connected
to deficiencies in the form of the exchange and correlation potential in LSDA.
From Table 1 and Fig. 5 we also note that the effect of crystal symmetry has a
large influence on the size and direction of the MAE, since Co in the fcc phase
has a much smaller value of the MAE compared to the value of the hcp phase.
This can be understood from perturbation theory where, as stated, it is known
that due to the high symmetry of the cubic crystal structure the influence of the
spin–orbit coupling strength (ξ) on the MAE enters as ξ4. Since the value of ξ
is rather small for Fe, Co and Ni, it follows that in cubic phases the magnitude
of the MAE is tiny. For lower symmetries of the crystal a stronger interaction of
ξ on the MAE is present, resulting in larger MAE values.
9 Although this statement was debated in Ref. [60] we maintain that these arguments
are not valid and the tests made to compare the two methods [60] are of poor quality.

10 Recent work by P. James [63] show that a better converged calculation of hcp Co
yields a MAE value of ∼ 20 µeV when the OP correction is omitted, with the 001
axis as the easy direction.
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6.2 Effects of Straining the Crystal Structure

In this section we discuss theoretical results of the MAE and spin and orbital
moments of tetragonally strained Fe (bct), Co (fct) and Ni (fct). Many studies
of orbital magnetism and MAE are devoted to Fe, Co and Ni as over–layers on a
substrate with a small in-plane lattice mismatch. This causes a strain in the over-
layer material (Fe, Co or Ni) for thicknesses sometimes up to 50 atomic layers.
As a rule of thumb one can estimate this strain by equating the in–plane lattice
parameter to that of the substrate, then the out–of–plane lattice parameter of the
over–layer is adjusted so that the volume/unit cell of the over–layer is constant
and the same as for the elemental form of the over–layer material. The effect of
strain on the MAE can, as we shall see in a moment, be large and since many
experimental studies are devoted to studying this situation it is important to
have a theoretical understanding of how crystallographic strain and MAE are
connected.
In this section we have chosen one primary example for which there are both

theoretical and experimental data available; Ni on Cu (001) [64]. A few recent
LEED studies of Co and Ni films on Cu(001) [65,66]have shown that these films
can be grown epitaxially in a face centered tetragonal (fct) structure which de-
viates with a few percent from that of the fcc structure. In addition these films
have been shown to have an out–of–plane magnetization for film thicknesses
above ˜7 atomic mono–layers [67] and an in–plane magnetization for thinner
thicknesses [68]. This is a rather unusual behavior since in most systems the
shape anisotropy will be the dominating term in the thicker limit and it always
favors the in-plane magnetization. In many epitaxially grown magnetic films it is
known that the magnetic anisotropy energy, MAE, (per atom) of the system can
be expressed by the empirical formula, E = Ev + 2Es

nd
, where nd is the number

of atomic layers in the film and Ev and Es are the so–called volume and surface
(interface) contributions to the magnetic anisotropy energy, respectively. Nor-
mally the surface contribution (Es) is much larger than the volume contribution
(Ev) so that for thin film thicknesses the surface dominates and determines the
easy axis magnetization. Normally the volume contribution is assumed to be a
result of the material in an undistorted structure (e.g. fcc) and hence is assumed
to be small. For instance the volume contribution of fcc Ni is small compared
to the surface contribution. Hence only two terms need be considered, the sur-
face contribution to the MAE and the shape anisotropy. With increasing film
thickness the surface contribution becomes less important since it scales with
the inverse of the film thickness, so that eventually the shape contribution domi-
nates. Since this contribution always favors an in–plane magnetization, a change
of magnetization direction as a function of increasing film thickness will be from
out–of–plane to in–plane, in contrast to the experimental result for Ni on Cu. It
was speculated [67] that the unusual behavior of the Ni/Cu system is driven by
a large and positive volume contribution, Ev, to the magnetic anisotropy energy
in the Ni film which occurs due to the tetragonal distortion of Ni grown on a
Cu(001) substrate, in combination with a negative surface contribution, Es. We
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Fig. 6. Calculated values of the MAE (001 vs. 110 direction) as a function of crystal-
lographic strain of fct Ni. Calculations with and without the orbital polarization term
are shown. Also shown is the experimental value of Ref. [67].

will demonstrate in this section that this indeed is the case and that a breaking
of the crystal symmetry enhances the value of the MAE dramatically.
Using the full–potential LMTO method, Ev for Ni in a face centered tetra-

gonal (fct) structure was calculated [64]. Ev is here defined as the difference in
total energy, between the [110] and [001] magnetization directions, per atom. In
Fig. 6 Ev is plotted as a function of tetragonal strain, or equivalently c/a-ratio,
of the fcc lattice (in reality it is, due to the strain, an fct lattice), assuming a
constant in–plane parameter (i.e. this distortion is not volume conserving). (The
in–plane lattice parameter, is designated 3.58 rA, which is the same as the value
measured by LEED for thin Ni films on Cu [65]. The experimental lattice para-
meter of bulk fcc Ni is 3.52 rA). At c/a=1.0 the fct crystal has a volume which
is larger than the volume of bulk fcc Ni. For comparison, both the calculated
Ev with and without orbital polarization is shown. Note the large increase of
Ev due to the orbital polarization. It is found that the [001] direction is the
easy direction for all c/a <1.0. Further, we notice that Ev is linear in c/a, to
first order, especially when c/a is close to 1.0. This indicates that our distortions
in the range c/a ˜0.88 to 1.0 are in the magneto–elastic regime. Notice also
that in the calculations with only the spin–orbit interaction included, this linear
behavior is not as pronounced. In addition it may be observed that due to the
breaking of the cubic symmetry the value of the MAE becomes very large. In
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Fig. 7. Calculated values of the MAE (001 vs. 110 direction) of Ni, for strains along
the Bains path. Calculations with and without the orbital polarization term are shown.

the figure we have also displayed one experimental value obtained from FMR
experiments [64]. In Fig. 6 we see that, for the experimental value of the c/a ratio
(c/a=0.945, corresponding to the tetragonal distortion in Ni films on Cu(001)),
the theoretical calculation gives Ev = 140 µeV. This is in reasonable agreement
with the measured value, Ev=60 µeV. The most important thing to note is that
theory and experiment agree on the sign of Ev and that they both show that it is
substantial in tetragonal Ni. As previously discussed by Schulz and Baberschke
[67], the large and positive Ev term is larger than the shape anisotropy for the
same Ni film. This leads to a change in magnetization direction for film thickn-
esses larger than a critical thickness of ˜7 mono–layers (i.e. Ev dominates over
the negative surface term, Es, and the shape anisotropy), which is consistent
with observations.
Since Fig. 6 demonstrates that a strain of the fcc crystal structure influences

the value of the MAE very strongly it is of interest to investigate the MAE over
large regions of strain. The so–called Bains path, which connects the bcc and fcc
structures via a tetragonal strain, is especially useful here since one may calculate
the MAE along the Bains path and observe how it is modified with respect to
changes in the strain. For this reason we show in Fig. 7 calculated values of Ev
along the Bains path. The calculations were done in such a way that the volume
is the same for all different c/a ratios. For c/a close to fcc or bcc one observes an
almost linear behavior as expected from magneto-elastic arguments. Since both
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Fig. 8. Calculated values of the MAE (001 vs. 110 direction) of fct Ni as a function of
calculated values of the orbital moment anisotropy. The behavior of (59) is shown as a
straight line.

fcc and bcc are cubic structures, and therefore (for symmetry reasons) can only
have magnetic anisotropy constants of 4th order and higher, Ev must be small
for c/a close to 1.0 and 1√

2
. Therefore the Ev curve must deviate from the linear

behavior at some intermediate c/a ratio. In Fig. 7 it is seen that this happens
when c/a is between 0.8 and 0.9. Further we notice that Ev is positive in the
interval 1√

2
<c/a <1 and negative for c/a >1.0 and < 1√

2
. It seems likely that this

information can serve as a prediction of the volume contribution to the MAE,
of pseudomorphically grown tetragonal Ni films on any substrate (if possible to
fabricate). Due to the elasticity the volume of fct Ni will never deviate much from
the volume of fcc Ni and the curve in Fig. 7 should resemble the experimental
reality.

6.3 The Correlation between MAE and Orbital Moment

An alternative to measuring the MAE directly (which could be difficult in certain
cases) may be found from a simple relationship between the orbital moment
anisotropy (OMA), which is defined as the difference in the orbital moment
when the magnetization is pointing in two different directions and the total
energy difference between these two directions, i.e. the MAE. Bruno showed [3],
using perturbation theory and assuming that the exchange–splitting is larger
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than the band width, that the following relationship holds between MAE and
OMA,

MAE =
ξ

4µB
OMA, (59)

where ξ is the spin–orbit parameter. Hence instead of measuring the MAE of a
system one could measure the orbital moment when the magnetization is poin-
ting in one direction and subtract the measured orbital moment of a different
magnetization direction. Forcing the magnetization to lie in a specific direction
may be obtained by an applied external field. Hence, if it is judged that the
OMA is easier to measure than the MAE one could simply take the measured
OMA and use (59) to estimate the MAE. In addition this relationship may be
used to analyze the behavior of measured MAE values of compounds, interfaces
and so on. Since the relationship between OMA and MAE relies on different
assumptions it is of interest to investigate how well this relationship holds for
different systems. We present one example here, Ni on Cu, and show that the
relationship between MAE and OMA actually is linear, which is what (59) sug-
gests. To illustrate this we plot in Fig. 8 the MAE of fct Ni (the same calculation
as described in the section above) as a function of the difference in orbital mo-
ment (OMA) when the magnetization is pointing in the 001 and 110 direction.
Since the calculation of fct Ni was made for several values of the c/a ratio, se-
veral different values of both the MAE and OMA may be calculated and it is
these data which are shown in the figure. The relationship between MAE and
OMA are also shown in Fig. 8, using a value of 105 meV for ξ. Overall, the rela-
tionship between the MAE and OMA is roughly linear although for certain c/a
ratios there are larger disagreements. This probably implies that the assumption
of an exchange splitting which is larger that the band width is starting to break
down.

7 Selected Compounds

There can be quite strong modifications of the MAE as well as spin and orbital
moments when a 3d element is situated in a compound. A good understanding of
the mechanisms which modify the MAE in one direction or the other is important
since one then can start tuning material parameters in order to optimize the
magnetic properties. We will outline here some observed trends and explain
their origins. We illustrate this with some recent results by Ravindran et al. [69]
on the FeX and MnX compounds (X=Ni, Pd and Pt).

7.1 FeX and MnX Compounds (X=Ni, Pd or Pt)

The MnX and FeX compounds crystallize in a layered tetragonal structure with
two atoms per primitive unit cell. Experimentally the MAE has been measured
for a large number of compounds of this type, some which are compiled in Ref.
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Fig. 9. Calculated values of the MAE (001 vs 100) of FeX and MnX compounds (X=Ni,
Pd or Pt).

[69]. We will by no means report on all the details of the theoretical work of
Ref. [69] but merely quote the results which are of largest importance for the
discussion here. In Fig. 9 we show the calculated MAE of iso–structural FeNi,
FePd and FePt as well as of MnNi and MnPt. This figure illustrates that for
inter–metallic compounds the influence of the spin–orbit coupling of the ligand
atom strongly influences the MAE. This finding was also observed for multi layer
systems [70]. In particular one observes that a larger spin–orbit coupling of the
ligand atom results in a larger value of the MAE. The reason for this is that the
magnetism of the 3d atoms will induce a magnetic moment also in the ligand
atoms, even if these atoms are non–magnetic as pure elements.
In Fig. 10 the effect of the exchange–splitting of the 3d atom is illustrated

and we observe that a larger exchange–splitting results in a larger MAE. Since
the MAE is a result of spin–orbit coupling in combination with spin polarization
the results in Figs. 9 and 10 are maybe not too surprising but it is not entirely
obvious that there should be a rather smooth relationship between the MAE
and exchange–splitting, as Fig. 10 shows. All details of the calculated results for
all studied FeX and MnX compounds are reported in Ref. [69] and are not given
here. However, we note that theory obtains the correct easy axis of magnetization
for all these compounds [69], although the absolute values sometimes deviate
from experiments with as much as 50%.
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Fig. 10. Calculated values of the MAE (001 vs 100) of TPt (T=Ni, Pd or Pt).

8 Surface and Interface Magnetism

When an atom is close to an interface or a surface it will experience a diffe-
rent environment compared to its elemental environment and as a consequence,
the wave function overlap between atoms, the hybridization and the direct hop-
ping will be different. In short, the electronic structure will be modified. In this
section we will illustrate how this rearrangement of the electronic structure pro-
duces magnetic properties such as spin and orbital moments and in addition how
it modifies the MAE. These effects are possible to measure on an almost atomic
level. For instance, the surface contribution to the MAE and the spin and orbi-
tal moments have been measured [66,67,71,72]. In addition to describing some
arcetypal features of surface and interface magnetism we will illustrate with a
few examples how, from an electronic structure point of view, one can use the
knowledge of these modifications in order to influence the magnetic properties
in a desired direction.

8.1 Spin and Orbital Moments of Selected Surfaces and Interfaces

The example to be discussed in this section is that of Co grown on Cu (001)
[71]. This system is chosen since it is known experimentally that thin films of Co
grow in a well characterized way (fcc) for up to 50 atomic layers, which enables
measurement of the thickness dependence of the spin and orbital moments. In
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the experiments of Tisher et al. [71]. X–ray dichroism was combined with the
sum rules [73], which connect x–ray dichroism to the size of magnetic moments.
The advantage with this experimental technique is that it gives atom specific
information about the magnetism. By studying the thickness dependence of the
ratio between orbital and spin moment one can calculate the interface, bulk and
surface contribution to this ratio. The so obtained ratio between orbital and
spin moments are in Table 2 compared to theoretical values [71]. Note that both
for the interface and the surface the ratio between orbital and spin moments is
increased over the bulk value. Theory is in good agreement with this finding,
and the observed trend with the largest ratio between orbital and spin moments
for the interface and smallest ratio for bulk, is reproduced by theory. Table 2
also lists the individual spin and orbital moments for the bulk, interface and
surface atomic layers. As may be observed both the spin and orbital moments
are enhanced for atoms which have a chemical surrounding which differs from
bulk. However, the enhancement is larger for the orbital moment than it is for the
spin moment. The enhancement of the spin moment may simply be understood
from the fact that atoms which are close to the surface or close to the Co/Cu
interface have a reduced number of nearest neighboring atoms. From a simple
tight binding model, where the band width scales as the square root of the
coordination number, the reduced bandwidth and enhanced spin moments at a
surface or even an interface (if the interaction–hybridization between the atoms
is weak over the interface) may be understood.

Table 2. Spin and orbital moments for 1 ML of Co on Cu (001), bulk fcc Co and Co
surface (001).

quantity 1 ML Co/Cu (001) Co (fcc, bulk) Co (fcc, surface)
ML(µB) 0.261 0.134 0.234
MS(µB) 1.850 1.724 1.921

ML/MS (theo.) 0.141 0.078 0.122
ML/MS (expt.) 0.195 0.078 0.113

In Fig. 11 we display as an example the DOS of bulk fcc Co and the DOS
projected on a Co atom for a mono–layer of Co on Cu (001). The narrowing
of the DOS at the surface is clear from this figure. Hence, since reduced band-
widths almost always (but curiously not always) produce enhanced spin mo-
ments, the trends of the spin moments in Table 2 may be understood. Before
entering the discussion about orbital moments we remark here first on the fact
that even though the DOS at, for instance, a surface may become substantially
more narrow compared to bulk, details of the filling of the bands as well as the
hybridization with the underlying substrate may in rare cases produce reduced
moments. An example of this is Ni on Cu (001) [74]. Let us now turn to the
enhancement of the orbital moment at the interface and at the surface. For the
surface it has been pointed out that the crystal field is different and that hence
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the crystal field quenching is reduced at the surface [75]. This tends to enhance
the orbital moments. Moreover, since the bands become more narrow at the
surface the value of the DOS at EF is enhanced compared to bulk producing
larger orbital moments. Finally we observe that orbital moments appear only
when one theoretically includes the relativistic spin–orbit interaction in a spin
polarized calculation. A spin degenerate calculation, even if it includes the spin–
orbit interaction, will yield a zero orbital moment. Thus, a spin moment which
is reduced, approaching zero, produces an orbital moment which also is reduced
and approaches zero. Conversely, increased spin moments, such as the ones for
the surface and interface in Table 2, generally produce larger orbital moments.
We have thus identified three mechanisms which for atoms at, or close to, the
surface result in enlarged orbital moments. For the interface atoms all the above
applies, and using these arguments one may also expect enhancements, at least if
the interaction (hybridization) with the atoms across the interface is sufficiently
small. Previously we discussed the simple relationship between MAE and OMA.
Since the size of the orbital moments often is larger for surfaces and interfaces
it is likely that the orbital moment anisotropy (OMA) also is enhanced, from
which it follows that the value of the MAE is larger than it would be in the
bulk. In addition to this the symmetry is lowered and the spin–orbit interaction
influences the MAE more strongly (than ξ4) which also produces larger values
of the MAE at surfaces and interfaces.
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Analysis of the MAE of different types of over-layers, for instance of Co
on Au(111) [76], Fe on Au(001) [77], and Co on Cu(001) [78]gives additional
valuable information. For the case of Co on Au(111) [76] it was demonstrated
that enhancement in the MAE could be understood from details in the DOS
projected on the Co site, and in particular a large DOS at EF with the ‘correct’
symmetry explained the large values of the MAE for certain thicknesses of an
Au capping layer [76]. This way of explaining variations of the MAE was also
reported by Pick and Dreyssé [79] who argued that a large MAE is expected
when a large value of the DOS (of XY and YZ character) is situated on EF.
Another important finding was also reported in Ref. [79], where the MAE of free
standing mono–layers of Fe, Co and Ni was shown to have a minimum number
of nodes as a function of band–filling.

9 Magneto–Striction

For strains close to the cubic phase, bcc and fcc, the change in the MAE is
linearly dependent on the strain, ε (ε=c/a-1). Using arguments from magneto–
elastic theory, the MAE of small tetragonal distortions can be used to calculate
the magneto–striction coefficient, λ001, as illustrated in Ref. [80] for fcc Ni. A
similar scheme has been used by Wu et al. [81].The total energy can be written
as the sum of an elastic and a magneto–elastic energy (Eel and Eme) which are
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assumed to be quadratic respectively linear in small distortions, Eel =Ćε2 and
Eme =α B ε. Here ε is the volume conserving tetragonal distortion (ε˜ 2(c/a-
1)/3), α is a constant which takes the value 1 for magnetization parallel to
the tetragonal axis and -12 for a perpendicular direction, and B and C are the
magneto–elastic and tetragonal elastic coefficients, respectively. The magneto–
striction coefficient, λ001, is defined as the equilibrium distortion, i.e. where the
total energy, Eel + Eme , has its minimum, for the case with the magnetization
along the [001] direction. By differentiation of the total energy with respect to ε
this turns out to be λ = − B

2C . The uniaxial MAE is, for small distortions, related
to the magneto–elastic energy as, EMAE = 3

2Bε = 3εCλ. Hence one may connect
the λ and MAE values and compare their trends directly [32]. Hence, in order
to study trends in the MAE as a function of, for instance, alloy concentration
one may, as an alternative, study experimental trends in λ or the trend in the
OMA, and this is something we will do next [32]. Before entering the details of
such a comparison we comment that a rigid band approximation works well for
studying the trends in the MAE and OMA of alloys involving Fe, Co and Ni
[32]. In Fig. 12 we compare the calculated OMA of bcc Fe and fcc Co to the
corresponding experimental magneto–striction coefficients, λ. All analyses [32]
indicate that it is sensible to compare these two properties, at least their trends.
Note that the theoretical calculations reproduce the experimental trends very
well. For the FeCo alloy (bcc) theory reproduces the drop in λ with increasing Co
concentration and the dip at a Co concentration corresponding to ˜2.5 spin down
d–electrons. The trends in λ of the FeNi (fcc) alloys is somewhat more intricate
where λ changes sign two times as a function of alloy concentration. However,
theory and experiment agree rather well and we conclude that magneto–striction
is a property which, at least concerning the trend, is accessible for state of the
art, total energy calculations [32].

10 Summary

To summarize, we have outlined some of the most central aspects of first prin-
ciples calculations of the magneto–crystalline anisotropy, and the spin and or-
bital moments of elements, compounds, interface and surface systems. One of
the more commonly used methods for solving the Kohn–Sham equations, the
full–potential linear muffin–tin orbital method is also reviewed, briefly. We give
several examples of the accuracy of theory for reproducing the MAE, the spin
and orbital moments, and the magneto–striction coefficients. A more detailed di-
scussion of these effects can however be found in Ref. [63]. The most important
results reviewed here is that the anisotropy of the orbital moment very often is
connected to the MAE and the orbital moment may be influenced by a ‘suitable’
tuning of the electronic structure, via geometry, ligand atoms, crystal field split-
ting and so on. A theoretical engineering of suitable magnetic properties, such as
magnitude of the moment and its directional behavior is now starting to become
feasible. By good knowledge of how the electronic structure, and especially the
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DOS projected on a specific atom type, is modified for different crystallographic
environments, it is possible to predict materials with novel magnetic properties.
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Abstract. The ab-initio self-interaction corrected (SIC) local-spin-density (LSD) ap-
proximation is elaborated upon, with emphasis on the ability to describe localization
phenomena in solids. Two methods for minimizing the SIC–LSD total energy functio-
nal are considered, one using an unified Hamiltonian for all electron states, thus having
the advantages of Bloch’s theorem, the other one employing an iterative scheme in real
space. Moreover, an extension of the formalism to the relativistic case is discussed.
Results for NiO, cerium and cerium compounds are presented. For NiO a significant
charge transfer gap is produced, in contrast to the near vanishing band gap seen in the
LSD approximation. Also, the magnetic moment is larger in the SIC–LSD approach
than in the LSD approach. For the cerium compounds, the intricate isostructural phase
transitions in elemental cerium and cerium pnictides may be accurately described. A
sizeable orbital moment for elemental cerium metal is obtained which, upon lattice
expansion, is seen to reach the atomic limit.

1 Introduction

Density Functional Theory (DFT)[1] is a very powerful tool for performing ab
initio electronic structure calculations for complex systems. It provides an exact
mapping of a many–body electron problem which occurs in solids onto a one–
electron problem. Instead of considering, for N interacting electrons in an exter-
nal potential Vext(r), the 3N-dimensional Schrödinger equation for the wavefun-
ction Ψ(r1, r2, r3, ..., rN ), DFT expresses this many–body problem in terms of
the electronic density distribution n(r) and a universal exchange and correlation
functional of the density, Exc[n]. The task of solving the many–body problem is
then reduced to finding sufficiently accurate expressions for Exc[n] and then sol-
ving the relevant one–electron Schrödinger equation with an effective potential of
which the exchange–correlation potential is a prominent part. Generalizing DFT
to the spin-polarised case, the spin-density functional theory (SDFT) allows to
study magnetic systems, where the magnetization density is the order parameter
of the theory, and appears explicitly in the exchange–correlation energy functio-
nal, i.e. , Exc[n,m].
H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 286−312, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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The local-spin-density (LSD) approximation to SDFT provides a simple and
rather successful scheme[2]. This is owing to a simple and practical approxima-
tion for Exc[n,m], where the exchange and correlation energy of the electrons
in the solid is expressed in terms of the exchange–correlation energy per par-
ticle, εxc(n,m), of a homogeneous electron gas of homogeneous density n and
magnetization m. Specifically, in each point in space the electrons present are
assumed to contribute an exchange–correlation energy given as if they were in a
homogeneous electron gas at the local density n(r) and m(r):

ELSD
xc [n,m] ≡

∫
n(r)εxc(n(r),m(r))dr,

The simple function εxc(n,m) is known with great precision, and hence allows
for an accurate determination of the ground state energies and charge densities
of any system.

The LSD is a highly accurate approximation for systems where the electrons
are delocalized and travel ’fast’ through the solid. However, when the ’static’
electron-electron interactions become so strong that some electrons get localized
on atomic sites in the solid, the LSD, as well as its gradient corrections, fail
to describe the correct groundstate. This obviously means that the Exc[n,m]
can not anymore be adequately represented by the LSD. For when the electron
slows down upon localization it starts responding to a different potential than
the effective LSD potential.

One of the most prominent examples where electron correlations are too
strong to be properly treated within LSD is the high-temperature superconduc-
tors, for which LSD fails to produce the antiferromagnetic and semiconducting
ground states of the generic La2CuO4 and YBa2Cu3O6 compounds [3]. Other
examples are the 3d transition metal oxides MnO, FeO, CoO and NiO, which
are Mott insulators characterized by localized d-electrons [4,5]. These materials
have antiferromagnetic order and large energy gaps although the metal d-shell is
incompletely filled. The LSD approximation does reveal the magnetic ordering
but with somewhat too small magnetic moments and vanishing (for FeO and
CoO) or very small (for MnO and NiO) gaps [6]. In addition, the persistence of
the magnetic moments above the Néel temperature is difficult to explain in the
Slater-Stoner picture of magnetism inherent in the LSD band picture. The failure
of LSD in producing the correct gaps may be traced to the fact that the LSD
eigenenergies do not have built in the large on-site Coulomb repulsion, which cha-
racterizes the separation between occupied and unoccupied states [5,7,8]. LSD
also fails to give a physically correct picture of trivalent cerium compounds,
which are characterized by each Ce atom having a localized f−electron. Cerium
is the first element of the Periodic Table to accomodate an f−electron. This
4f−electron is peculiar in being spatially localized with a radial extent much
smaller than that of the 5s and 5p semicore states, yet having an energy in the
region of the valence 6s and 5d electrons. Cerium metal has been widely studied
over the years, both experimentally and theoretically, mostly due to its famous
isostructural γ→α phase transition, occuring at a pressure of ∼8 kbar. This
phase transition is believed to occur as a consequence of a change in bonding
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properties of the f−electrons. In the (high–volume) γ phase the f−electrons
behave as non–bonding localized moments with a Curie–Weiss type susceptibi-
lity, while the (low–volume) α-phase is characterized by the f-electrons taking
more active part in the cohesion, either by hybridizing into the Bloch states, as
envisaged in the Mott transition model [9], or by forming a complicated Kondo
lattice groundstate [10]. In an LSD calculation the total energy minimum is fo-
und in the region somewhat below the α phase volume. Upon expansion of the
lattice, the γ → α transition is signalled by the onset of magnetization around
the observed lattice parameter for the γ phase [11]. The calculated pressure is
much too negative, however, since the f -electrons still contribute significantly to
the cohesion in the spin-polarized phase. The loss of cohesion upon localization
has been successfully described within the LSD in cases where the f-shell is half
filled, as in americium [12].

The concept of an electron being ‘localized’ is not particularly well-defined.
In a solid a periodic array of deep core states is equally well described by a set
of atom centered Wannier states or by k-dependent Bloch functions. A unitary
transformation connects the two representations, but the physical picture of a
core state is that of a localized wavefunction. The observation of multiplet effects
in photoemission experiments on 3d monoxides and rare-earth systems seems to
suggest that the local description is most appropriate for such systems. On the
other hand the great success of modern solid state theory in explaining most
conventional metals, semiconductors and insulators leaves little doubt that the
Bloch picture of normal valence electrons is the more fruitful one.

The Hubbard model [13] has often been used to describe materials where lo-
calization phenomena occur. The substantial Coulomb correlations on particular
atoms, say on a Ni d8 ion in NiO, induce an orbital polarization [5], which may
well be described already in a mean-field treatment of the Hubbard model, as
has been shown in the LDA+U approach [8,14]. However, the ‘localizing’ Hub-
bard term is usually too large to facilitate an accurate description of delicate
localization-delocalization transitions, as for example observed in rare-earth and
actinide systems.

Another way of taking into account the ’slowing down’ of an electron upon
localization is to consider orbital–dependent functionals, Exc[{ψα}], where {ψα}
is a set of one–electron orbitals with the orbital index α. These functionals
are a possible evolution on the LSD and can be considered as a basis of the
orbital–dependent DFT. They can be treated as the starting point for new ap-
proximations to DFT. The self–interaction–corrected LSD (SIC-LSD) is one such
approximation [15]. It is based upon the observation that localized orbitals in
the LSD give rise to an error due to a spurious self–interaction contained in
the effective one–electron potential. This error increases the more localized the
orbital becomes. For a ’fast’ electron, however, the self-interaction is negligible
or zero. The SIC-LSD energy functional is constructed from the LSD functional
by explicit subtraction of the self-interaction term from the ELSD

xc term. As we
will demonstrate in this paper the SIC-LSD functional allows for an improved
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treatment of the electron correlations, and is more adequate than the LSD for
systems where both localized and delocalized electrons are present.

Solids where both localized and delocalized electrons are present give rise to
some of the most facinating phenomema in solid state physics. They include the
heavy fermion compounds and their complicated phase diagrams at low tem-
peratures, the still unexplained phenomenon of the high Tc superconductivity,
the observation of collossal–magneto resistance, with its potentially wide ran-
ging technological applications. The theoretical investigations have usually been
confined to either studies of generic model Hamiltonians which allow for a very
accurate treatment of the electron–electron interactions, or materials specific
LSD calculations with a not fully satisfactory treatment of the ’static’ electron–
electron correlations.

As already mentioned, the basic assumption in the SIC–LSD is that ‘loca-
lized’ electron states experience a different potential from that of the normal
delocalized valence electrons. One may argue for such a differentiation by thin-
king in terms of Wigner delay times of electrons on a particular atom [16]. If an
electron resides on a given atom for a long time the local electronic structure
of the atom accomodates to the presence of the added electron, while a fast
electron has no influence on the effective structure of that atom. This picture
is implemented by assuming a fast (‘delocalized’) electron to experience an ef-
fective potential as given by the LSD approximation, while a slow (‘localized’)
electron experiences the LSD potential corrected for the self-interaction of the
electron in question. Taking the d8 configuration of a Ni ion in NiO as an ex-
ample, one of the 8 d-electrons residing on a particular atomic site experiences
Coulomb interactions with 7 other d-electrons. On the other hand, a conduction
electron injected into a perfect NiO crystal will be made out of excited states,
which ride on top of an array of Ni d8 ions, and therefore Coulomb interacts
with all the 8 d-electrons. That the LSD is adequate for describing the ‘fast’
electron is validated by the great success of this approach in describing the bon-
ding properties of conventional metals. This picture is still very idealized, since
the transition from localized to delocalized must be a gradual one. The added
electron in NiO still may show some localized characteristics, and the ground
state electrons do sometimes show k-dependent dispersions. However, one may
be able to distinguish phases of solids being either predominantly ‘localized’ or
predominantly ‘delocalized’, which will be the subject of the present paper.

In Section II the general formalism of the SIC–LSD approximation will be
discussed, and in Sections III and IV two implementations of the approach into
ab-initio linear-muffin-tin orbitals (LMTO)[17] band structure codes will be ou-
tlined. Section V is devoted to a relativistic extension of the formalism, while in
Section VI we concentrate on applications. Section VII concludes the paper.

2 The SIC Formalism

In the LSD all electrons feel the same mean-field single particle potential, V LSD,
and the same magnetic field, Beff , which depends on the total charge density, n,
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and magnetization density, m. The LSD energy functional, ELSD, has the form:

ELSD = Ekin + U [n] +
∫
dr Vext(r)n(r) + ELSD

xc

+
∫
dr m(r) · Bext(r) (1)

with

Ekin =
∑
α

〈ψα|T̂ |ψα〉

U [n] =
1
2

∫
drVH(r)n(r)

VH(r) =
∫
dr′ 2n(r′)

|r − r′|

Vext(r) = −
∑
T,τ

2Zτ
|T + τ − r|

ELSD
xc [n,m] =

∫
dr n(r) εxc(n(r),m(r)).

Here, T̂ is a kinetic energy operator, and the ψα’s are the one-electron wave-
functions which in the nonrelativistic as well as the scalar relativistic case are
two-component spinors. Bext(r) is the external magnetic field, Zτ is the atomic
number of site τ , T is a lattice translation vector of the Bravais lattice, and τ is
the postion vector of site τ in the unit cell. n and m may be expressed in terms
of the ψα’s in the usual way

n(r) =
∑
α

nα(r) =
∑
α

ψ∗
α(r)ψα(r)

m(r) =
∑
α

mα(r) =
∑
α

ψ∗
α(r)σψα(r), (2)

with σ being the spin operator.
Minimizing the above energy functional by taking the functional derivative

of ELSD with respect to ψ∗
α, leads to the single particle wave equation of the

form

hLSD(r)ψα(r) = ( T + V LSD(r) + σ · BLSD(r) ) ψα(r) = εα ψα(r), (3)

with

V LSD(r) = VH(r) + V LSD
xc (r)

V LSD
xc (r) =

δELSD
xc [n,m]
δn(r)

BLSD(r) = Bext(r) + BLSD
xc (r)

BLSD
xc (r) =

δELSD
xc [n,m]
δm(r)

. (4)
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As discussed in the introduction the LSD successfully describes many so-
lid state properties, but suffers from a deficiency caused by the spurious self-
interaction (SI). Namely, such contributions to ELSD as U [n], ELSD

xc , and BLSD
xc

contain spurious self-interactions of the single particle charges, nα, and magnetic
moments, mα, which do not cancel. The exact SDFT energy functional does not
contain any self-interaction, and also in some existing approximations, e.g., the
Hartree-Fock theory, the SI terms cancel out. Of course, due to its great merits, it
does not seem justified to discard the LSD altogether in cases where this inherent
self-interaction matters. Instead, in such cases, it is sufficient to augment LSD
with terms removing this deficiency. The resulting approach, the self-interaction
corrected LSD (SIC-LSD) formalism,[15] is defined by the following functional

ESIC-LSD = ELSD + ESIC, (5)

with

ESIC = −
∑
α

eα[nα,mα] = −
∑
α

( U [nα] + ELSD
xc [nα,mα] )

U [nα] =
1
2

∫
dr nα(r)VH,α(r)

VH,α =
∫
dr′ 2nα(r′)

|r − r′| .

ELSD
xc [nα,mα] =

∫
dr nα(r)εxc(nα(r),mα(r))

The corresponding single-particle wave equation, obtained by taking the func-
tional derivative of ESIC-LSD with respect to ψ∗

α, reads

( hLSD(r) + wSIC
α (r) ) ψα(r) =

∑
α′
λα,α′ ψα′(r), (6)

with hLSD given in Eq. (3) and

wSIC
α = vSIC

α + σ · bSIC
α

vSIC
α = −( VH,α(r) + V LSD

xc,α (r) )

vLSD
xc,α(r) =

δELSD
xc [nα,mα]
δnα(r)

bSIC
α (r) = −δE

LSD
xc [nα,mα]
δmα(r)

.

Note that the problem of finding the single-particle states is now complicated
by the fact that each state sees a different potential, wSIC

α . Instead of determi-
ning the energy eigenvalues, it is therefore necessary to evaluate the Lagrange
multipliers matrix, λ, to ensure orthonormality within the set of states ψα. Fur-
thermore, we should remark that in contrast to ELSD, ESIC-LSD is not invariant
with respect to unitary transformations in the space of the states ψα: Suppose
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we perform a unitary transformation among the occupied orbitals specified by
the matrix U = 1 + i(dS), with (dS)α1,α2 = ε, (dS)α2,α1 = ε∗. Then the states
ψα1 , and ψα2 change to first order in ε by iεψα2 and iε∗ψα1 , respectively. Using
the definition of wSIC

α (Eq. (6)), we find the first order change of ESIC to be:
dESIC = iε 〈ψα1 |wSIC

α1
− wSIC

α2
|ψα2〉 + c.c.. If we intend to study the ground

state properties we should therefore choose the states ψα so that they minimize
ESIC with respect to all unitary transformations, that is to say, they fulfil the
so-called localization criterion

〈ψα1 |wSIC
α1

− wSIC
α2

|ψα2〉 = 0. (7)

It appears that the SIC-potentials wSIC
α are significant for those states whose

charges are localized in space. Thus the importance of SI corrections for atoms,
molecules and core electrons in solids seems obvious. However, our main interest
concentrates on the valence electrons in periodic solids. If extended Bloch states
are used to describe these electrons, the corresponding wSIC

α ’s turn out to be
negligible. If, on the other hand, spatially localized states are used the wSIC

α may
be an attractive potential contribution of considerable size. In the remainder of
this and the following section we will describe one method of solving the SIC-
LSD energy minimization problem of Eq. (6), while section IV describes another
yet equivalent procedure.

In what follows we assume that the electronic system in question may be
described by Wannier states Φ, each centered around some atom τ in some unit
cell, displaced from the central unit cell by the lattice translation vector T. For
some of these states, defined by φα with α = (m,T), the SI-corrections are
assumed to be negligible, while for the others, defined by ψβ with β = (n,T),
the SI-corrections have to be taken into account explicitly. Indices n and m
thus enumerates the Wannier states within the unit cell. For a periodic solid we
assume a periodic repetition of localized states, i. e.,

ψn,T(r) = ψn,T=0(r − T) = ψn(r − T). (8)

φm,T(r) = φm,T=0(r − T) = φm(r − T). (9)

The same symmetry applies to the SIC-potential of state ψn,T:

wSIC
n,T(r) = wSIC

n,T=0(r − T) = wSIC
n (r − T), (10)

and the Lagrange multipliers matrix as

λn,T;n′,T′ = λn;n′(T − T′). (11)

Considering the states ψn and φm as the elements of the column vector Φ, and
their complex conjugates as the elements of the row vector Φ†, Eq. (6) may be
rewritten in matrix form as

( HLSD(r) + W SIC(r − T) ) Φ(r − T) =
∑
T′
λ(T − T′) Φ(r − T′). (12)
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Here,HLSD andW SIC are diagonal matrices, and the subblock ofW SIC acting on
the states φm is zero. Since the λ’s are chosen to make the states Φ orthonormal,
the Lagrange multipliers may be expressed as the following matrix elements of
the SIC-Hamiltonian

λ(T − T′) =
∑
T1

∫
Ωunit

drΦ†(r + T − T′ + T1)(HLSD(r)

+W SIC(r + T1))Φ(r + T1). (13)

When deriving Eq. (13) we have made use of Eqs. (8) to (10). To construct the
Bloch state vector, Ψk, we form the following lattice sum

Ψk(r) =
∑
T

M−1(k) exp(−ikT) Φ(r + T), (14)

while the inverse transformation is

Φ(r + T) =
1
ΩBZ

∫
dkM(k) exp(ikT) Ψk(r). (15)

Here, the k-integration is over the Brillouin zone (BZ) whose volume is ΩBZ .
The unitary matrix M will be elaborated upon at a later stage. By acting from
the left with the operator

A =
∑
T

M−1(k) exp(−ikT),

on the wave equation for Φ(r + T), Eq. (12), one obtains the following wave
equation for the Bloch state vector Ψk(r) with the wave vector k:

( HLSD(r) + V SIC
k (r) ) Ψk(r) = λk Ψk(r). (16)

Here V SIC
k is a diagonal matrix whose elements, vSIC

k,ν , are given by

vSIC
k,ν (r)Ψk,ν(r) =

∑
n

∑
T

(M−1(k))ν,n exp(ikT)wSIC
n (r + T)

ψn(r + T), (17)

where the subscripts n and ν refer to bands. The Lagrange multipliers matrix,
λk, is defined as

λk =
∑
T

exp(ikT)M−1(k) λ(T)M(k). (18)

Note that V SIC has lattice translational symmetry: V SIC
k (r+T) = V SIC

k (r), due
to the symmetry of the Bloch states: Ψk,ν(r+T) = exp(ikT)Ψk,ν(r). In practical
applications vSIC

k,ν is chosen to be nonzero only for the bands which are expected
to be extremely narrow, i.e. having well localized Wannier states. We shall call
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the states corresponding to such bands the SI corrected Bloch states, and label
them by c, while the rest of states shall be referred to as the non-SI corrected
Bloch states, and labelled by nc.

It is straightforward to write ELSD in the usual way in terms of the Bloch
states, Ψk, while ESIC is expressed through the Wannier states ψn(r − T) as:

ESIC = −
∑
n,T

en[nn,mn]. (19)

Due to the translational symmetry of the localized states, and making use of
Eqs. (8) to (10), the localization criterion, Eq. (7), takes the following form

∑
T

∫
Ωunit

dr ψ∗
n1

(r + T) (wn1(r + T) − wn2(r + T + T1 − T2))

ψn2(r + T + T1 − T2) = 0. (20)

This relation is valid for any pair of states ψn1 and ψn2 , and arbitrary translation
lattice vectors T1, T2. Here the integration is over the volume of the central unit
cell. By inserting this relation into Eq. (13) it is easy to see that the subblock
of the Lagrange multipliers matrix λ, built by the SIC-corrected localized states
ψn, is hermitian

λn1,n2(T1 − T2 ) = λ∗
n2,n1(T2 − T1). (21)

Finally, it remains to define the matrix M(k) introduced in Eq. (14). The
requirement is that this matrix, via Eq. (15), generates well localized states,
ψn, that satisfy the wave equation (12), and for which the SI corrections are
significant. The following expression turned out to meet such requirements

M(k) = U M (1)(k) (22)

with

(M (1)(k))ν,ν′ = Nν(k)
∫
Ω

dr Ψ∗
k,ν′(r) Ψk=0,ν(r) (23)

and

Nν(k) = (
∑
ν′

|
∫
Ω

drΨ∗
k,ν′(r)Ψk=0,ν(r)|2)−1/2. (24)

Here the integration is over the volume Ω, obtained by applying all symmetry
operations of the crystalline point group to the unit cell. The matrix U is deter-
mined numerically so that the localized states ψn are orthonormal and fulfil the
localization criterion (Eq. (20)).
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3 The Unified Hamiltonian Approach

In practical applications we have to iterate Eqs. (4), (6) and (16) to (18) to
self-consistency. In particular, the Lagrange multipliers matrix, λk, has to be
evaluated to ensure the orthonormality of the Bloch states, Ψk. An alternative
method, developed in relation to the Hartree-Fock theory, consists in solving the
eigenvalue problem for a hermitian operator, hu,k, the so-called unified Hamil-
tonian

hu,k |Ψk,ν〉 = εk,ν |Ψk,ν〉. (25)

To define hu,k appropriate for the SIC-LSD method[18] we introduce the projec-
tion operators, Pk, onto the subspaces of the SI corrected Bloch states, Ψk,c, and
the projection operators, Qk, onto the subspace of the non-SI corrected Bloch
states, Ψk,nc, namely

Pk =
∑
c

Pk,c =
∑
c

|Ψk,c〉 〈Ψk,c|

Qk =
∑
nc

Qk,nc =
∑
nc

|Ψk,nc〉 〈Ψk,nc|. (26)

Subsequently, hu,k is defined as

hu,k = hLSD −
∑

c,c′;(c�=c′)

Pk,c h
LSD Pk,c′ +

∑
c

Pk,c v
SIC
k,c Pk,c

+Qk

∑
c

vSIC
k,c Pk,c +

∑
c

Pk,c v
SIC†
k,c Qk (27)

or alternatively as

hu,k = hLSD +
∑
c

vSIC
k,c Pk,c

−
∑

c,c′;(c�=c′)

Pk,c (hLSD + vSIC
k,c′) Pk,c′

+
∑
c

Pk,c v
SIC†
k,c Qk. (28)

To fulfil the hermiticity of hu,k, the transformation matrix, M, and the localized
states, ψn, have to be chosen so that the following quantity, named Ac, is real

Ac =
∑
T,n

∫
Ωunit

dr Ψ∗
k,c(r)M

−1
c,n(k) exp(−ikT)wn(r + T)

ψn(r + T). (29)

To show that Eqs. (25) and (16) are equivalent let the Hamiltonian huk, as
defined by Eq. (28), act on the SI corrected Bloch state, Ψk,c. This gives

(hLSD + vSIC
k,c ) |Ψk,c〉 = εk,c |Ψk,c〉

+
∑

c′;(c′ �=c)
〈Ψk,c′ |hLSD + vSIC

k,c |Ψk,c〉 |Ψk,c′〉. (30)
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Similarly, for the non-SI corrected state Ψk,nc we get

hLSD |Ψk,nc〉 = εk,nc |Ψk,nc〉
−

∑
c

〈Ψk,c|vSIC†
k,c |Ψk,nc〉 |Ψk,c〉. (31)

When interpreting the matrix elements on the right-hand side of Eqs. (30) and
(31) as the elements of the Lagrange multipliers matrix, λk, then Eqs. (30) and
(31) are, indeed, equivalent to Eq. (16). The eigenvalues εk,ν are the diagonal
elements of λ.

The transformation from real space to k-space, as defined by Eq. (14) and
applied to Eq. (7), leads to the following localization criterion for the Bloch
states ∫

Ωunit

drΨ∗
k,ν1 (vSIC∗

k,ν1 (r) − vSIC
k,ν2(r)) Ψk,ν2(r) = 0. (32)

Inspecting the r.h.s. of Eq. (30), containing the Lagrange multipliers of the sub-
space of the SI corrected Bloch states, one can see that the above equation
guarantees the hermiticity of the corresponding subblock of λk. Summarizing,
the unified Hamiltonian approach is seen to yield both the orthogonalized SI
corrected and non-SI corrected Bloch states, as well as the Lagrange multipliers
matrix, all just from one matrix diagonalization per k-point.

The unified Hamiltonian scheme may readily be incorporated into the linear
muffin-tin orbital (LMTO) band structure method,[17,35] and in what follows
we shall describe the necessary steps in some detail.

The lattice Fourier transforms of the muffin tin orbitals (MTO’s), χσ,I,k(r),
are used as a set of one-particle basis states. The label I stands for the angular
momentum quantum numbers l,m and the site τ corresponding to the head of
the MTO, while σ denotes the spin component. The space coordinate is decom-
posed as r = ρ + τ , with ρ restricted to the central unit cell. The Bloch states
have the form

Ψσ,k,ν(ρ, τ) =
∑
I

A
(ν)
σ,I;k χσ,I,k(ρ, τ). (33)

The wave vector coefficients, A(ν)
σ,I;k, and the one particle energies, εσ,k,ν , are

obtained by solving the following eigenvalue problem
∑
I′

〈χσ,I,k|huk|χσ,I′,k〉〉 A(ν)
σ,I′;k =

εσ,k,ν
∑
I′

〈χσ,I,k|χσ,I′,k〉 A(ν)
σ,I′;k. (34)
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Making use of Eq. (27) leads to the following form of the matrix elements of the
unified Hamiltonian

〈χσ,I,k|huk|χσ,I′,k〉 = 〈χσ,I,k|hLSD|χσ,I′,k〉
−

∑
c,c′,c�=c′

∑
ν

〈χσ,I,k|Ψσ,k,c〉〈Ψσ,k,c|ΨLSD
σ,k,ν〉

εLSD
σ,k,ν〈ΨLSD

σ,k,ν |Ψσ,k,c′〉〈Ψσ,k,c′ |χσ,I′,k〉

+
∑
c

〈χσ,I,k|Ψσ,k,c〉〈Ψσ,k,c|vSIC
k,c |Ψσ,k,c〉〈Ψσ,k,c|χσ,I′,k〉

+(
∑
nc,c

〈χσ,I,k|Ψσ,k,nc〉〈Ψσ,k,nc|vSIC
k,c |Ψσ,k,c〉

〈Ψσ,k,c|χσ,I′,k〉 + c.c. ). (35)

In the second term on the right-hand side of the above equation, we have inserted
a complete set of the LSD Bloch states, ΨLSD

σ,k,ν , with the corresponding eigen-
values εLSD

σ,k,ν . Next, instead of using the MTO’s, we can express all quantities
in terms of the normalized single-site solutions, φ, and their energy derivatives,
φ̇, at fixed energies εσ,l,τ , and in the spherical potential V LSD, and the magne-
tic field BLSD. In the representation of these states Φσ,I,1(ρ) = φσ,I(ρ), and
Φσ,I,2(ρ) = φ̇σ,I(ρ), the Bloch states read as

Ψσ,k,ν(ρ, τ) =
∑
I,i

a
(ν)
σ,I,i;kΦσ,I,i(ρ). (36)

The relation between the coefficients a(ν)σ,I,i;k on the one hand and the coefficients

A
(ν)
σ,I;k on the other, is provided by the standard LMTO formalism.[35] Similarly,

the MTO’s may be written in the form

χσ,I,k(ρ, τ ′) =
∑
I′,i

Γσ,I,I′,i;kΦσ,I′,i(ρ). (37)

Inserting Eq. (36) into Eq. (15) we obtain the corresponding representation of
the localized states, ψn

ψn(r + T) = ψn(ρ, τ ;T) =
∑
l,m,i

C
(n)
σ,I,i;TΦσ,I,i(ρ) (38)

with

C
(n)
σ,I,i;T =

1
ΩBZ

∑
ν

∫
dkMn,ν(k) exp(ikT)a(ν)σ,I,i;k.
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Making use of Eqs. (36) to (38) and (17), we can calculate the matrix elements
of the unified Hamiltonian, hu,k, with

〈χσ,I,k|Ψσ,k,ν〉 =
∑
I′,i

Γσ,I,I′,i;k a
(ν)
σ,I′,i gI′,i

〈Ψσ,k,ν |vSIC
k,c |Ψσ,k,c〉 =

∑
n,T

M−1
c,n(k) exp(−ikT)

∑
I,i,i′

a
(ν)∗
σ,I,i;kC

(n)
σ,I,i′,T

×
∫
dρΦ∗

σ,I,i(ρ)wSIC,avn (ρ, τ ;T)Φσ,I,i′(ρ). (39)

Here gI,i = 〈ΦI,i|ΦI,i〉, and we have approximated the SIC potential wSIC
n by its

spherical average, wSIC,avn , over the ASA sphere at site τ in the cell T. Then
it is also straightforward to express the energy functionals ELSD and ESIC in
terms of quantities defined above.

As can be seen from Eq. (35), the SIC-LSD implementation is much more
complicated than the LSD, because the Hamiltonian matrix elements depend
explicitly on the Bloch states Ψσ,k,ν . Consequently, one has to iterate the appro-
priate set of equations until the self-consistency for the one-particle potential,
V LSD, is achieved, and in addition, the unified Hamiltonian becomes consistent
with its solutions. In practice, it turns out, that the self-consistency with res-
pect to all necessary quantities, can be reached within a moderate number of
iterations, if the Hamiltonian, h(i)

u , for the ith iteration is evaluated using the
Bloch states of the previous iteration. In contrast, the transformation matrix,
M, the localized states, ψn, and the SIC potentials, vSIC

k,ν , are derived from the

eigenstates of h(i)
u . In the first iteration one starts with LSD Bloch states. The

LSD potential, V LSD, is obtained by mixing the total charge densities of previous
iterations in the usual way. In practice, the evolution of the total energy, Etot, is
a suitable measure of the progress made in approaching overall self-consistency:
If Etot is converged to within 10−4 −10−5 Ry, then also all other quantities turn
out to be sufficiently well converged.

In contrast to the LSD, the SIC-LSD formalism gives a great deal of variatio-
nal freedom to the DFT. At the beginning of each calculation one has to decide
on the number and the character of the localized states ψn, e.g., their orbital
moment- and spin-quantum numbers, and the sites to which they belong. This
choice depends on the nature of the system in question and is guided by physical
intuition. In general, it is not unique. We have the freedom to try different, but
reasonable, ’configurations’. After carrying each of them to self-consistency the
resulting total energies, Etot, are compared, and the configuration corresponding
to the lowest total energy is considered to provide the best description of the
physical situation, as described within the SIC-LSD scheme. Of course, there al-
ways exists a possibilty that the LSD will provide the minimum of Etot, meaning
that the SI corrections are of no importance for the system in question.
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4 The Steepest Descent Approach

An alternative way to solve the SIC-LSD equations, Eq. (6), is by the steepest
descent method,[20] whereby the ESIC-LSD functional is minimized iteratively.
If at some point approximative solutions ψ̃α are given, the energy may be furt-
her minimized by adding a correction proportional to the gradient of ESIC-LSD.
Specifically,

ψ̃α → ψ̃α + δψα, (40)

with

δψα(r) = −x Q̂ δE
SIC-LSD

δψ∗
α(r)

, (41)

where Q̂ projects onto the space orthogonal to the occupied states:

Q̂ = 1 −
occ.∑
α

|ψ̃α〉〈ψ̃α|. (42)

The gradient in Eq. (41) is given by the SIC Hamiltonian in Eq. (6), so that

δψα = −x


(hLSD + wSIC

α )ψ̃α −
∑
β

λα,β ψ̃β


 . (43)

The localization criterion, Eq. (7), may be fulfilled by adding to ψ̃α a correction
term given by

δψα = −y
∑
β

rα,β ψ̃β (44)

rα,β = λα,β − λ∗
β,α, (45)

while a third type of correction term is needed to keep the orbitals ψα orthonor-
mal:

δψα = −1
2

∑
β

tα,β ψ̃β , (46)

with

tα,β = 〈ψ̃α|ψ̃β〉 − δα,β . (47)

The steps (43), (44) and (46) may be interchanged and the parameters x and
y chosen according to the problem at hand. At convergence all steps vanish,
and it is seen that a vanishing step in Eq. (43) corresponds to Eq. (6), a vanis-
hing step (44) corresponds to Eq. (7), and a vanishing step (46) corresponds to
orthonormality, tα,β = 0.
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When the one-electron wavefunctions are expanded in a basis set, χi, as

ψα =
∑
i

aαi χi , (48)

where i is a composite index labelling the degrees of freedom of the basis, the
steps (43), (44) and (46) are turned into matrix operations on the vector a of
expansion coefficients. In our actual implementation, the χi’s are conveniently
chosen as TB-LMTO functions.[21] in which case i labels atomic sites and angu-
lar momentum and spin quantum numbers, as discussed in connection with Eq.
(33). The steps then read

δaα = −x (O−1 −Π) · (H + Vα) · aα , (49)

δaα = −y
∑
β

rα,β a
β , (50)

δaα =
1
2

(O−1 −Π) · O · aα , (51)

respectively. Here, O, H and Vα are the overlap, the Hamiltonian, and the
SIC-potential matrices:

Oij = 〈χi|χj〉, (52)
Hij = 〈χi|hLSD|χj〉, (53)
Vα
ij = 〈χi|wSIC

α |χj〉. (54)

and Π is given by

Πij =
occ.∑
β

δσασβ
· aβ∗

i a
β
j , (55)

where the δ-function ensures that only projection on states with the same spin as
ψα is considered. In a periodic lattice, O, H, and Π are translational invariant.
For Π this follows from the translational invariance (8), which for the expansion
coefficients means that (setting α ≡ (n,T), with T a lattice translation):

an,T(τ+R)L = an,0(τ+R−T)L . (56)

Here L enumerates the angular momentum characteristics of the TB-LMTO
function. Only the SIC potential matrix Vα is not translational invariant, and
requires special attention. As in the unified Hamiltonian approach the transla-
tional invariance is exploited by switching to k-space: We assume R running
over a finite cluster (M unit cells with periodic boundary clusters, where M
must be so large as to ensure that the SIC states vanish outside this region).
Let k enumerate the corresponding reciprocal space, i. e., the M ×M matrix
UkR ≡ 1√

M
eik·R is unitary: UU+ = U+U = 1. Then Eqs. (49)-(51) hold for the

Fourier transformed quantities as well, except for the product Vαaα, which must
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first be evaluated in real space and Fourier transformed afterwards. Specifically,
let

bn,T(τ+R)L = 〈χ(τ+R)L|V SIC
n,T |ψn,T〉 . (57)

Then, with

bnτL(k) =
1√
M

∑
R

eik·(R−T) bn,T(τ+R)L , (58)

we get

δan(k) = −x (O−1(k) −Π(k)) · [H(k) · an(k) + bn(k)] , (59)

δan(k) = −y
∑
n′
rn,n′(k) an

′
(k) , (60)

and

δaν(k) =
1
2

(O−1 −Π) · O · aν (61)

for the gradient-step, the unitarian-mixing step and the orthonormalizing step,
respectively. The r-matrix in k-space in (60) is simply given by:

rn,n′(k) =
∑
τL

[an
′∗

τL(k) · bnτL(k) − bn′∗
τL(k) · anτL(k)] . (62)

5 The Relativistic Extension

For many applications it is desirable to take account of all relativistic effects,
including the spin-orbit coupling. This is not only important when we are con-
cerned with systems containing heavy atoms, but also if we, e.g., intend to get
reasonable results for properties depending on orbital moments and their cou-
pling to the spins of the electrons. Furthermore, the localized states resulting
from the SI corrections are especially sensitive to the relativistic effects. There-
fore, we generalize the SIC-LSD formalism, described in the previous section, to
a fully relativistic spin-polarized case. The steps involved are in close analogy to
the derivation of the relativistic LSD-LMTO method by Ebert [22].

The LSD wave equation of the scalar relativistic theory, where the two spin
channels, as well as the orbital- and spin-moments are decoupled, is now replaced
by the Dirac equation.[23] The relativistic generalization of Eq. (3) reads as

hLSD-REL = (T̂REL + V LSD + βσ · BLSD(r))ψα(r) = εαψα(r) (63)

with

T̂REL = α
1
i
∇ +

1
2
(β − I). (64)
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Here α, β are the Dirac matrices, while I is the unit matrix. The wave functions
ψα, specifically their kets, are now four-component column vectors, wheras their
bras are the row-vectors with complex conjugate elements.

The equations (1) to (32) remain valid in the relativistic case provided one repla-
ces the operators σ and T̂ with the matrices βσ and T̂REL, respectively [23]. The
other operators should be interpreted as diagonal matrices. The main complica-
tion arises from the nature of the single-site wave functions of the Hamiltonian
hLSD-REL. They are to a good approximation simultaneously the eigenfunctions
of the orbital moment, l, and the z-component, µ, of the total angular momen-
tum, j. In the case of |µ| < l+1/2 there exist two independent solutions for these
quantum numbers (is = 1, 2), and each solution is the sum of two components
(ic=1,2), having total angular momentum jic=1 = l + 1/2 and jic=2 = l − 1/2,
respectively. In the case of |µ| = l + 1/2, on the other hand, there is only one
solution which in addition is an eigenfunction of the total angular momentum
j = l + 1/2. The relativistic generalization of the single-site wave functions,
Φσ,I,i1 , of the scalar relativistic theory, as introduced in Eq. (36), become

Φ
(κ)
I,is,i(ρ) = Φ(κ)

I,1,is,i(ρ) + (1 − δ|µ|,l+1/2) Φ
(κ)
I,2,is,i(ρ) (65)

with

Φ
(κ)
I,ic,is,i(ρ) = R(κ)

I,ic,is,i(ρ)Yjic,µ,lic,κ
(ρ). (66)

Here R(κ)
I,ic,is,i is the radial part of the ic component of the single-site solution

is, and the index I comprises the indices l, µ, as well as, the site-index τ . The
κ = 1 corresponds to the large component and κ = 2 to the small component
of the bispinor ΦI,ic,is,i. Then lic,κ takes the values l1,1 = l2,2 = l, l1,2 = l + 1,
and l2,1 = l − 1. The spinor functions Yj,µ,l, are combinations of the spherical
harmonics, Yl,m, the spin functions, χs, and the Clebsch-Gordon-coefficients of
the well known form

Yj,µ,l(ρ) =
∑
s

< j, µ|l, µ− s, 1/2, s〉Yl,µ−s(ρ)χs.

The matching of these single-site functions to the interstitial LMTO envelope
functions, and the construction of the relativistic MTO’s has been described by
Ebert[22] and will not be repeated here. With the information given above,
it is easy to see that Eqs. (33) to (39) apply to the relativistic case as well,
provided the subscript σ is omitted, and the index I(l,m, τ) gets replaced by
the indices (I(l, µ, τ), is). Furthermore, an evaluation of the occuring quantities
implies matrix- and vector-operations in spinor space. Since the dimension of the
eigenvalue problem is doubled in comparison to the scalar relativistic case, it is
obvious that fully relativistic calculations will be considerably more expensive. In
addition, the computation of the matrix elements, especially those introduced
by the SIC terms, is rather tedious and requires careful programming. As an
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illustration, we conclude this section by displaying the relativistic version of Eq.
(39), namely

〈Ψk,ν |vSIC
k,c |Ψk,c〉 =

∑
n,j

M−1
c,n(k) exp(−ikT)

∑
I,i,i′

∑
κ,is,is′

a
(ν)∗
I,is,i;kC

(n)
I,is′,i′〈Φ

(κ)
I,is,i|wSIC,avn |Φ(κ)

I,is′,i′〉T (67)

with

〈〈ΦκI,is,i|wSIC,avn |ΦκI,is′,i′〉T =
∫
ρ2dρ vSIC,avn (ρ, τ ;T)

∑
ic

R
(κ)
I,ic,is,i(ρ)

R
(κ)
I,ic,is′,i′(ρ) +

∑
ic,ic′

Q(jic, jic′ , µ, l)
∫
ρ2dρ bSIC,avn (ρ, τ ;T)R(1)

I,ic,is,i(ρ)

R
(1)
I,ic′,is′,i′(ρ) −

∑
ic

Q(jic, jic, µ, l2,ic)
∫
ρ2dρ bSIC,avn (ρ, τ ;T)R(2)

I,ic,is,i(ρ)

R
(2)
I,ic,is′,i′(ρ))

(68)

and

Q(j1, j2, µ, l) =
∑

s=(−1/2,1/2)

2s < j1µ|l, µ− s, 1/2, s〉

〈j2µ|l, µ− s, 1/2, s〉. (69)

6 Applications

In this section we concentrate on results obtained within SIC-LSD for NiO,
cerium metal and cerium monopnictides. For all these systems LSD fails in de-
scribing the correct physics. In NiO, as mentioned earlier, LSD underestimates
the magnetic moment and leads to a vanishing band gap due to an inadequate
treatment of the on-site Coulomb repulsion among 3d electrons. In solids contai-
ning cerium it is the f electrons that are not correctly represented within LSD,
and the attention here is turned to a variety of structural and magnetic phase
transitions, beyond the reach of LSD.

6.1 NiO

The calculated key parameters of NiO as given by LSD, LDA+U, SIC-LSD and
Hartree-Fock theory are quoted in Table 1 and displayed in Fig. 1. Applying
SIC-LSD to NiO is seen to lead to a substantial band gap of 3.15 eV, at the
experimental volume, which compares reasonably well with the experimental
value of about 4.2 eV [27]. Also the magnetic moment is improved with respect
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Fig. 1. The band gap, magnetic moment and the total energy of NiO in the antiferro-
magnetic unit cell as a function of the lattice constant, as calculated by LDA+U and
SIC-LSD.

to the LSD result, and the lattice parameter is nearly spot on. The experimental
values of the magnetic moment fall between 1.66 and 1.90 µB [8]. That SIC-LSD
provides better treatment for the 3d electrons in this system is also supported
by comparison with the results of LDA+U calculations [24], performed within
the spin polarised generalisation of the method. The latter is yet another scheme
that takes the on-site Coulomb repulsion, U , explicitly into account, however, U
is often treated as a parameter and chosen such that some quantity agrees with
its experimental value. In Fig. 1 we show the results of both schemes for the
band gap, spin magnetic moment, and total energies, as functions of the lattice
constant. The numerical values calculated by LDA+U and SIC-LSD agree well
both between themselves and with the experimental data. It is interesting to
note that according to both the LDA+U and SIC-LSD calculations the band gap
in NiO increases with increasing pressure. The band gap was found to behave
similarly in LSD. The value of the band gap is sensitive to the degree of charge
transfer from Ni to O. If this charge transfer increases, the band gap decreases,
because the unoccupied Ni d states move down in energy, while the occupied
O p states move up in energy. We conclude that the SIC is the mechanism for
producing a sizeable band gap in NiO, but the actual value of the gap reflects
the charge transfer in the system.

In Table 1 we compare the SIC-LSD results for the band gap, lattice pa-
rameter and bulk modulus with the experimental results and those from other
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Table 1. Parameters characterizing the electronic structure of crystalline NiO and its
structural stability, as calculated by LSD, LDA+U (with a Ū=6.2 eV) and SIC-LSD
[24]. The Hartree-Fock ( H-F ) values and experimental data for NiO were taken from
Towler et al. [25].

Quantity/Method LSD LDA+U SIC-LSD H-F Experiment
lattice constant (rA) 4.08 4.19 4.18 4.26 4.17
band gap (eV) 0.5 3.0 3.15 14.2 4.2

B = (C11 + 2C12)/3 (GPa) 230, 236a 182 220 214 145, 205, 189

a : Ref. [26] .
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Fig. 2. Comparison of the experimental electron energy loss oxygen K edge spectrum of
NiO with the density of empty oxygen 2p states of NiO, as calculated by LSD (Ū = 0),
LDA+U (Ū = 6.2 and 8 eV), and SIC-LSD.

calculations within LDA+U, LSD and Hartree-Fock method. Note that, unlike
in case of the SIC-LSD, the results for LSD and LDA+U refer to the full poten-
tial implementation of the LMTO method. The effect of the full potential can be
seen in the LDA+U total energy curve in Fig. 1, at higher values of the lattice
parameter, as compared with the one due to SIC-LSD. This, however, has not
affected the minima of the respective curves, as can be seen from Table 1.

A further demonstration of the advantages of SIC-LSD over LSD is presen-
ted in Fig. 2, where we compare the K edge EELS spectra of NiO with the
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Fig. 3. Cohesive energy of Ce (in mRy/atom) as a function of atomic volume (in
a30/atom). The curve marked ’SIC-LSD’ corresponds to the calculation with one loca-
lized f−electron per Ce atom, while the curve marked ’LSD’ corresponds to itinerant
f−electrons. The common tangent marks the phase transition.

calculations performed within LSD, LDA+U and SIC-LSD. The structure of the
experimental EELS spectrum shown in Fig. 2 is dominated by the the dipole
{filled 1s}→{empty 2p} transitions. Figure 2 shows that the unoccupied O 2p
density of states (DOS) calculated using LSD does not agree well with the expe-
rimental EELS spectrum. The peaks in the EELS spectrum are associated with
the hybridization between oxygen 2p and nickel 3d, 4s and 4p states, respectively,
and our analysis shows that the latter two peaks are practically unaffected by
Hubbard correlations in the 3d shell. The separation between the two main pe-
aks, namely, the O 2p-Ni 3d and O 2p-Ni 4p peaks, as seen in the LSD DOS
curve, is approximately 2 eV larger than the separation between the same peaks
in the experimental spectrum, and the spectral weight of the low-energy peak
in the DOS calculated using LSD is far too high. Performing the LDA+U cal-
culation for the O 2p DOS, with U=6.2 eV, leads to a significant improvement
over LSD. Considering SIC-LSD result, that unlike LDA+U does not contain
any adjustable parameters, the agreement with experiment is rather good. The
SIC-LSD O 2p DOS shows slightly reduced separation between the two main
peaks in the spectrum, and thus improves the agreement with the experimental
EELS spectra, as compared to LSD.

6.2 Cerium

As mentioned in the introduction, LSD was not able to explain the γ→α phase
transition in cerium although it gave a magnetic solution for the lattice parame-
ter close to the experimental value of γ−Ce. The SIC-LSD, however, provides
a unified description of this transition with the total quenching of the magnetic
moment and volume collapse of 24 %. The calculated transition pressure of −1
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within the relativistic SIC-LSD approximation in γ−Ce.

kbar compared favourably with the value of −7 kbar, extrapolated from the ex-
perimental phase diagram to T=0K, at which the calculations were performed.
The volume collapse associated with the transition is shown in Fig. 3, where the
calculated total energy of Ce as a function of volume is shown [28–30]. The two
different curves correspond, respectively, to the α−phase (curve marked LSD;
SIC–LSD reduces to the LSD for delocalized electrons) and γ−phase (curve
marked SIC–LSD). The LSD minimum of the total energy, corresponding to the
α−phase, is located in the non–magnetic region at V = 168 (a.u.)3, while the
spin magnetic moment is m = 1.32µB at the SIC–LSD total energy minimum,
corresponding to the γ−phase. Within these ab initio calculations, the γ→α
transition can be viewed as the transition between the phase with fully localized
f electrons and the phase, where the f electrons are fully delocalized.

Performing the fully relativistic SIC-LSD calculations allows one to study
also the orbital moment of the γ–phase of Ce [31]. In Fig. 4 the orbital moment
can be seen to extrapolate to the atomic value of 3 at large volumes. This is the
localization of one f electron within the relativistic SIC-LSD theory that suffices
to describe the substantial spin and orbital moments in γ−Ce. The relativistic
SIC-LSD scheme allows for each of the 14 possible f−states in Ce to become
localized. As seen in Table 2, one finds that these 14 possible solutions have
quite different orbital moments and correspond to different total energies. The
14 solutions have the block structure of 2+6+6. The ground state solution has
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the characteristics of a good crystal field-like state: sizeable spin and orbital
moments which are anti-parallel aligned. The other solutions are substantially
different from what one would expect from crystal field considerations. We find
6 solutions with energies 9.4 mRy higher than the lowest energy solution. These
solutions are characterized by an orbital moment which is over 4 times smaller
than the one of the ground state, but a spin moment substantially unaltered.
Finally we have 6 solutions, situated 6.3 to 7.9 mRy above the minimum, whose
orbital moment is essentially zero and whose spin moment is smaller than that of
the other solutions. The total energy differences in Table 2 could be interpreted
as excitation energies to populate each of the 14 localized states, corresponding
to different spatial symmetry. We note that the solutions fulfill time-reversal
symmetry: 7 spin ups and 7 spin downs, nearly all pairwise equal. The small
deviations from exact spin up and down symmetry should be considered as the
measure of the accuracy of our calculations. In Table 2 we also present the
contributions to the spin and orbital moments due to the SIC localized states
only, M loc

s and Llocz , respectively. Regarding the total orbital moment, one can
see that nearly the whole contribution comes from the localized state, whilst
in case of the total spin moment 74% comes from the localized state, and the
delocalized states contribute the remaining 26%.

Table 2. Calculated total energy differences with respect to the ground state (in mRy),
orbital and magnetic (in µB) moments of the γ−phase of Ce. Also quoted are the local
orbital and magnetic moments of the localized state.

Ms Ms
loc Lz Lz

loc ∆E

1.310 0.960 −2.290 −2.240 0.0
−1.309 −0.966 2.317 2.305 0.0
1.259 0.923 −0.053 0.034 6.3
1.275 0.935 −0.060 0.028 6.7

−1.257 −0.896 0.054 −0.032 6.9
−1.266 −0.913 0.021 −0.131 7.0
1.271 0.913 −0.024 0.128 7.9

−1.271 −0.912 0.032 −0.120 7.9
1.293 0.986 −0.536 −0.432 9.4

−1.293 −0.985 0.536 0.432 9.4
1.293 0.985 −0.532 −0.429 9.4

−1.293 −0.985 0.532 0.429 9.4
1.293 0.985 −0.510 −0.408 9.4

−1.293 −0.985 0.535 0.432 9.4

The solution with the lowest total energy is consistent with all three Hund’s
Rules, and the spin and orbital moments are anti-parallel aligned. This gives
one confidence that the relativistic SIC–LSD scheme forms a bridge between
the atomic and band pictures, and enables one to obtain a good description of
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both the localized and itinerant properties of a rare earth metal. The SIC-LSD
relativistic band theory preserves all characteristic features of the γ→α transition
in Ce, and explains it as a transition from a localized state with maximum spin
and orbital moments to a delocalized state without spin and orbital moments.

Table 3. Calculated transition pressures for the electronic and structural phase tran-
sitions in the cerium pnictides. Also quoted are the specific volumes on the two sides of
the transition [32] . The notation (d) and (l) refers to calculations with delocalized or
localized Ce f−electrons, i.e. tetravalent or trivalent Ce atoms. B2∗ denotes a slightly
distorted B2 structure (see Ref. [39] for discussion).

compound transition Pt (kbar) Vh (a03) Vl (a03)
theo. expt. theo. expt. theo expt.

CeN B1(d) → B2(d) 620 - 148 - 141 -
CeP B1(l) → B1(d) 71 90a,55b 325 308a 297 2 98a

CeP B1(d) → B2(d) 113 150(40)a 288 285a 246 247a

CeAs B1(l) → B2(d) 114 140(20)c 332 315c 265 274c

CeSb B1(l) → B2*(l) 70 85(25)d 400 398d 353 354d

CeSb B2*(l) → B2*(d) 252 - 311 - 295 -
CeBi B1(l) → B2*(l) 88 90(40)e 427 399e 376 360e

CeBi B2*(l) → B2*(d) 370 - 317 - 304 -

a: Ref. [33]. b: Ref. [34].
c: Ref. [35]. d: Ref. [36] .
e: Ref. [37] .

6.3 Cerium Monopnictides

The cerium monopnictides, CeN, CeP, CeAs, CeSb and CeBi, undergo a variety
of structural and magnetic phase transitions under pressure. They have been
thoroughly studied experimentally, and here we discuss a comparison of those
studies with the SIC-LSD calculations. A detailed summary of our SIC-LSD
calculations is given in Table 3, where we present the respective transition pres-
sures and volumes associated with a variety of transitions in comparison with
the experimental data. The SIC-LSD calculations involved the total energy cal-
culations as a function of volume for CeN, CeP, CeAs, CeSb and CeBi for B1 and
B2 structural phases, in the ferromagnetic (F) arrangement of Ce moments, and
with the f−electron treated as either delocalized (LSD) or localized (SIC-LSD)
[38,39,30].

As can be seen in Table 3, the calculations faithfully reproduce the pressure
behaviour of the Ce pnictides. In particular, we find that only for CeN the f
electron is delocalized at ambient conditions, while the other cerium pnictides
are characterized by localized f electrons, in accordance with experimental ob-
servation. For CeP two phase transitions are observed, first the delocalization
transition and subsequently the structural transition from B1 to B2 structure.
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The two transitions merge into a single one for CeAs, namely a transition from
a B1 structure with the f electron localized to a B2 structure with the f elec-
tron delocalized. For the two remaining systems, CeSb and CeBi, the structural
transition occurs first and at higher pressures does the f electron become deloca-
lized. This trend may be understood in terms of increasing f electron localization
with increasing nuclear charge of the ligand. Moreover, for CeSb and CeBi the
SIC-LSD predicts a second isostructural B2→B2 transition to occur at higher
pressures, where the f−electrons are delocalizing. It seems necessary to perform
measurements for these systems at pressures above 250 kbar to clarify whether
such transitions occur in reality.

The magnetic properties of cerium monopnictides, with the exception of CeN,
are rather complicated with several antiferromagnetically ordered phases, inclu-
ding a Devil’s staircase, and phase transitions as a function of pressure, tempera-
ture and applied magnetic field [34,40–43]. Therefore, we have for CeP performed
a series of calculations exploring the energetics of various conceivable magnetic
orderings. Apart from the ferromagnetic structure, LSD (delocalized f electrons)
and SIC-LSD (localized f electrons) calculations were done in the AF1 and AF2
structures. In the AF1 structure the cerium moments are ferromagnetically or-
dered within (100) planes, which then are antiferromagnetically stacked in the
(100) direction. Similarly, in the AF2 structure the cerium moments are ferroma-
gnetically ordered within (111) planes, which are antiferromagnetically stacked
in the (111) direction. In accordance with experiment an AF1 groundstate with
the localized f electron [39] was obtained. The equilibrium volumes of the three
magnetic structures were found to be virtually identical. CeP was found to be se-
mimetallic in the minimum energy position in both the AF1 and AF2 structures,
but at negative pressures (expanded volume), a semimetal-semiconductor tran-
sition took place. This semimetallic behaviour was found to originate from small
hole pockets around the Γ point in the center of the Brillouin zone and compen-
sated by electron pockets around the M point on the Brillouin zone boundary.
These pockets are mostly confined to the basal plane of the Brillouin zone. These
results are in agreement with de Haas-van Alphen [44,45] and photoemission [46]
findings regarding the location of the electron and hole pockets.

7 Conclusions

We have described the SIC-LSD formalism that provides a mechanism for trea-
ting the static Coulomb correlations within ab initio band theory. We have de-
monstrated that it can treat both localized and delocalized electrons on equal
footing, and owing to that is capable to study systems and properties for which
LSD fails. What SIC-LSD does is to assign an energy contribution, the self-
interaction correction, for an electron state to localize. Whether a system is
localized or delocalized is then a result of a fight between this explicit ’localiza-
tion energy’ and the band formation energy. Both LSD and SIC-LSD are local
minima of the DFT energy functional. Like LSD, SIC-LSD is still a one-electron
theory and both work only in extreme situations. Namely, when U/t � 1, with
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t being a typical hopping integral, LSD provides the correct physics, while for
U/t � 1, SIC-LSD gives the valid description of the physical situation. Most
importantly, as discussed in the present paper, SIC-LSD provides a correct de-
scription of pressure induced transitions from predominantly localized to pre-
dominantly delocalized groundstates, and is in general much more appropriate
approach for systems with strong Coulomb correlation.
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Abstract. Ab initio formulations of the interlayer exchange coupling (IEC) between
two, in general non-collinearly aligned magnetic slabs embedded in a non-magnetic
spacer are reviewed whereby both the spacer and the magnetic slabs as well as their
interfaces may be either ideal or random. These formulations are based on the spin-
polarized surface Green function technique within the tight-binding linear muffin-tin
orbital method, the Lloyd formulation of the IEC, and the coherent potential appro-
ximation using the vertex-cancellation theorem. We also present an effective method
for the study of the temperature dependence of the IEC. The periods, amplitudes, and
phases are studied in terms of discrete Fourier transformations, the asymptotic be-
havior of the IEC is briefly discussed within the stationary-phase method. Numerical
results illustrating the theory are presented.

1 Introduction

Oscillatory interlayer exchange coupling (IEC) has been found in a number of
ferromagnetic/non-magnetic multilayer systems and is in some cases accompa-
nied by an oscillatory magnetoresistance. The physical origin of such oscillations
is attributed to quantum interferences due to spin-dependent confinement of the
electrons in the spacer. The periods of the oscillations with respect to the spacer
thickness can be correlated to the spacer Fermi surface, a relation frequently
used in experimental studies. A number of models have been proposed to ex-
plain this phenomenon and we refer the reader to excellent recent reviews on the
subject [1–3].

The situation is much less satisfactory if the amplitudes and/or phases are
concerned. They both depend sensitively on the details of the Fermi surface, and,
from the experimental point of view, on the quality of the multilayers. Typically,
samples include various amounts of disorder at interfaces as well as in the bulk
(e.g., surface roughness, intermixing, impurities, grain boundaries, etc.) which
can influence the amplitudes and the phases significantly. From the theoretical

H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 313−346, 1999.
 Springer-Verlag Berlin Heidelberg 1999



314 Josef Kudrnovský et al.

standpoint of view it is important to keep in mind that the IEC is an oscillatory
phenomenon for which, strictly speaking, amplitudes and/or phases are defined
only in the asymptotic limit. Experimental data, however, are usually only avai-
lable for the first few oscillations which are sufficient to extract periods, but not
amplitudes and phases, in particular for the so-called long-period oscillations.
The presence of impurities not only complicates the theoretical studies but also
can provide a valuable insight into the effects controlling the IEC. In particu-
lar, substitutional alloying can provide a valuable informations concerning the
topology of alloy Fermi surfaces. Alloying has also another, more subtle effect,
namely it influences both amplitudes and phases and it can even introduce an
extra damping of the oscillation amplitude (an exponential damping in addition
to the usual 1/N2 decay, where N is the spacer thickness) if k‖-resolved electron
states in the neighborhood of so-called callipers (extremal vectors of the Fermi
surface) are influenced by disorder. Finally, we mention that a special case of
alloying is intermixing of magnetic and spacer atoms at interfaces which can
significantly influence coupling amplitudes and which occurs frequently during
sample preparation in actual experiments.

It is thus obvious that the study of the effect of alloying on the periods, ampli-
tudes, and phases of the IEC is an important issue which, however, is not properly
reflected in the available literature. Conventional bandstructure methods are of
limited use for such studies although in particular cases, when combined with
the virtual-crystal-type approximations (VCA), they may be justified, e.g., for
VCr or CrMn alloy spacers studied recently [4]. However, the complete neglect
of alloy disorder makes a reliable determination of the coupling amplitudes or
phases and, to some extent, even of the coupling periods, uncertain even in such
favorable cases.

In addition, reliable conclusions and verifications of experimental measure-
ments can only be based on a parameter-free theory. In order to determine the
IEC one typically estimates the energy difference between the ferromagnetic (F)
and antiferromagnetic (AF) alignment of a system consisting of two magnetic
slabs separated by a non-magnetic spacer. Using total energy differences (eva-
luated with the local density approximation to the density functional theory)
represents an extremely difficult task as the tiny exchange energies have to be
subtracted from the background of huge total energies. Even if one employs very
fast and accurate linear methods and computational tricks, the spacer thickness
for which the calculated IEC values are reliable, is limited to about 20 layers [5,6].
On the other hand, for thin spacers this is the most accurate approach. One can
alternatively employ asymptotic theories which are, strictly speaking, valid in
the opposite regime, namely, for large spacer and magnetic slab thicknesses. The
idea is to determine reflection (transmission) coefficients for an isolated inter-
face between magnetic and spacer metals and the extremal vectors of the spacer
Fermi surface. The former quantities then determine the coupling amplitudes
and phases while the latter quantities their periods. In this case the calculations
can be performed by using conventional bandstructure methods and, in addi-
tion, they will provide a deep insight into the physical nature of the IEC [7].
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Note, however, that neither of the above techniques can be extended to treat
disorder nor can they be used to interpolate between two limits, namely, the case
of thin spacers (preasymptotic region) and of thick spacers (asymptotic limit).
For this a theory is needed which can bridge both the preasymptotic and the
asymptotic region within a unified framework: IEC values for a large set of spa-
cer thicknesses (say, for 1-100 atomic layers) can be analyzed in terms of discrete
Fourier transformation in order to reliably determine not only periods, but also
coupling amplitudes and phases. In addition, one can sample various subsets in
order to analyze both the preasymptotic and the asymptotic regime as well as
long-period oscillations.

The basic idea is to determine the IEC directly by employing the so-called
magnetic force theorem [8,9] for rotations in spin space rather then shifting atoms
as in the conventional force theorem [10]. We can thus use the same potentials
for both the F and AF (or, in general, rotated) alignments of the magnetic
slabs (the frozen-potential approximation) and consider only the single-particle
(Kohn-Sham) energies.

This allows a direct formulation of interlayer exchange coupling based on an
application of the Lloyd formula [11] in order to evaluate the difference between
the grand canonical potentials of the F and AF alignment. The first calculations
of that type were performed by Dederichs’s group in Jülich [12]. The method
used in the present paper extends the above approach in three relevant aspects:
(i) a reformulation within the framework of a surface Green function technique
by which linear scaling of the numerical effort with respect to the number of
layers [13,14] is achieved; (ii) a proof of the so-called vertex-cancellation theo-
rem [15] in order to study the influence of alloy disorder on the properties of the
IEC, and (iii) an efficient method for a fast and accurate evaluation of integrals
involving the Fermi-Dirac distribution function in order to study effects of finite
temperature [16,17]. In the present paper we will review these particular tech-
niques that were developed in the past few years and subsequently applied to a
number of cases including alloy disorder [18–22]. In addition, we have studied
systematically the effect of non-magnetic cap-layers [23,24] on the periods, the
amplitudes, and the phases of the oscillations of the IEC.

2 Formalism

In this section we derive an expression for the IEC for in general non-collinearly
aligned magnetic slabs embedded in a non-magnetic spacer.

2.1 Geometry of the System

The system considered consists of a stack of layers, namely, from the left to
the right: (i) a semi-infinite (nonmagnetic) substrate, (ii) a left ferromagnetic
slab of thickness M (in monolayers, MLs), (iii) a nonmagnetic spacer of thickn-
ess N , (iv) a right ferromagnetic slab of thickness M ′, and (v) a semi-infinite
(nonmagnetic) substrate. The thickness of the ferromagnetic slabs may extend
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to infinity. Eventually, one of the semi-infinite substrates may be substituted
by a finite nonmagnetic cap of thickness P interfacing semi-infinite vacuum. In
general, the various parts of the system can consist of different metals, including
disordered substitutional alloys. We assume that the spin orientation of the right
magnetic slab is rotated by an angle θ with respect to that of the left magnetic
slab. In particular, the cases θ = 0 and θ = π correspond to the ferromagne-
tic and antiferromagnetic alignments of magnetic moments of two subsystems,
respectively.

2.2 Electronic Structure of the System

The electronic structure of the multilayer is described by means of the tight-
binding linear-muffin tin orbital (TB-LMTO) method [25]. In particular we
employ the all-electron scalar-relativistic version as generalized to the case of
random alloys, their surfaces and interfaces [26,27]. The key quantity of the for-
malism, the physical Green function G(z), is expressed via the auxiliary Green
function gα(z) in the screened tight-binding LMTO representation α as

G(z) = λα(z) + µα(z) gα(z)µα(z) , (1)

where

gα(z) = (Pα(z) − Sα)−1
. (2)

Here Sα is a matrix of screened structure constants SαRL,R′L′ , and Pα(z) is a
site-diagonal matrix of potential functions Pα,σRL (z). The potential functions are
diagonal with respect to the angular momentum index L = (�m) and the spin
index σ =↑, ↓ while the structure constants are spin-independent. The potential
functions can be expressed via the so-called potential parameters C, ∆, and γ
in the following manner

Pα(z) =
z − C

∆+ (γ − α)(z − C) , (3)

where for matters of simplicity all indices are dropped. Similarly, the quantities
λα and µα in (1) can be expressed as

λα(z) =
γ − α

∆+ (γ − α)(z − C) , µα(z) =
√
∆

∆+ (γ − α)(z − C) . (4)

As only the screened representation will be used the superscript α is omitted in
the following.

A separate problem is the determination of potential functions P (z) for a
given layered structure. Here we only mention that by employing the magnetic
force theorem we can use the same potential functions for the ferromagnetic and
rotated (or, antiferromagnetic) alignments. For random systems treated within
the so-called coherent potential approximation (CPA) the potential function
P (z) is substituted by its coherent potential counterpart, P(z), whereby the
formal structure of the Green function (2) remains the unchanged. The methods
of determination of (coherent) potential functions for collinear alignments of
magnetic moments in the present context can be found elsewhere [27,26].
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2.3 Definition of the IEC

The exchange coupling energy Ex, evaluated in the framework of the magnetic
force theorem, is defined as the difference of the grand canonical potential Ωλ
between the ferromagnetic (λ = F ) and antiferromagnetic (λ = AF ) alignments
of two subsystems, i.e. Ex = ΩAF − ΩF . More generally, the quantity of the
physical interest is the difference of the grand canonical potentials between a
rotated (θ �= 0) and the ferromagnetic (θ = 0) alignment of the two magnetic
slabs, namely, Ex(θ) ≡ δΩ(θ) = Ω(θ) −Ω(0).

The grand canonical potential Ω of a system is defined by

Ω(T, µ) = −
∫ ∞

−∞
f(E, T, µ) N(E) dE , (5)

where N(E) is the integrated valence density of states, f(E, T, µ) is the Fermi-
Dirac distribution function at the temperature T and the chemical potential µ
of electrons. It should be noted that at zero temperature the chemical potential
coincides with the Fermi energy EF of the system. The integrated valence density
of states is then given by

N(E) = − 1
π
Im

∫ E

−∞
TrG(E′ + i0) dE′ , (6)

where Tr means the trace over lattice sites R, angular momentum indices L =
(�m) and spin indices σ. Using (3,4), the following identities can be verified

d

dz
λ(z) = −λ2(z) ,

d

dz
P (z) = µ2(z) . (7)

Together with formula (94), we find

d

dz

[
Tr ln λ(z) + Tr ln g(z)

]
= −TrG(z) . (8)

The grandcanonical potential (5) is then expressed as

Ω(T, µ) = − 1
π
Im

∫ ∞

−∞
f(E, T, µ) Tr ln λ(E + i0) dE

− 1
π
Im

∫ ∞

−∞
f(E, T, µ) Tr ln g(E + i0) dE . (9)

The formula in (9) is the expression for the grandcanonical potential within the
TB-LMTO method [28] and for finite temperatures.

The rotated magnetic configuration is characterized by the set of rotation
angles Θ = {θR} for all the lattice sites. In the reference (F) state all the angles
θR = 0 while in the rotated state θR = θ in the rotated magnetic layer and
θR = 0 for all other lattice sites. The quantities λ(Θ, z) and g(Θ, z) for the
rotated system are given by

λ(Θ, z) = U(Θ)λ(0, z)U†(Θ) , g(Θ, z) = [U(Θ)P (0, z)U†(Θ) − S]−1 . (10)
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Here [U(Θ)]RR′ = δRR′U(θR) is the rotation matrix for spin 1/2 particles defined
in terms of the single-site matrices U(θR) [29]

U(θ) =
(
c s

−s c

)
, (11)

where c = cos(θ/2), s = sin(θ/2), U(θ)U†(θ)= U†(θ)U(θ) = 1, and detU(θ) =
detU†(θ) = 1. We note that in the rotated magnetic configuration P (Θ, z) =
U(Θ)P (0, z)U†(Θ) is generally a non-diagonal matrix with respect to the spin
indices σ, σ′.

The first term in (9) is independent of θ because λ(z) is site (and layer-)
diagonal, it therefore does not contribute to the exchange energy Ex(θ), i.e., it
is sufficient to consider the second part only,

Ω(θ, T, µ) = − 1
π
Im

∫ ∞

−∞
f(E, T, µ) Tr ln g(θ,E + i0) dE . (12)

It should be noted that the above expression is valid only in the absence of
spin-orbit coupling.

The magnetic force theorem used here for the evaluation of the IEC was used
also in related problems, e.g., for the evaluation of the exchange energies of two
impurities embedded in a nonmagnetic host [8] and then extended to the case
of Heisenberg exchange parameters between two sites in a magnetic material[9].
In the latter case the magnetic force theorem is valid only for the infinitesimal
rotations while in the former case it is valid also for θ = π [30].

2.4 Configurational Averaging

Keeping in mind applications to random systems, one is interested in the confi-
gurational average of the expression in (12), namely,

〈Ω〉 = − 1
π
Im

∫ ∞

−∞
f(E, T, µ) 〈Tr ln g(E + i0) 〉 dE , (13)

where 〈. . . 〉 denotes a configurational average. Difficulties here arise from the fact
that the configurational average of the logarithm 〈ln g(z)〉 can differ significantly
from the logarithm of the configuration average ln 〈g(z)〉. The difference X ≡
〈ln g〉− ln 〈g〉, the so-called vertex correction, is difficult to calculate and usually
cannot be neglected. Fortunately, this problem can be circumvented by using
the vertex cancellation theorem [15], which states that the contributions from
the vertex correction for the F and AF configurations cancel each other exactly,
namely Tr XAF − Tr XF = 0, such that to first order with respect to the angle
between the magnetizations in the two ferromagnetic layers vertex corrections
can be omitted. In other words, the evaluation of (13) simplifies to

〈Ω〉 = − 1
π
Im

∫ ∞

−∞
f(E, T, µ) Tr ln 〈g(E + i0) 〉 dE ,

= − 1
π
Im

∫
C

f(z, T, µ) Tr ln 〈g(z) 〉 dz . (14)
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We have also substituted the energy integral by integration over a contour in
the complex energy plane z. The possibility to neglect vertex corrections can
conveniently be used in calculations of the interlayer exchange coupling as expli-
cit numerical calculations have shown that it remains valid to a good accuracy
even for an angle as large as π [15]. In this respect it is very similar to the force
theorem [10]. It is important to note that such an extension is only applicable
to the evaluation of exchange energies of magnetic systems interacting via a
non-magnetic host. An evaluation of exchange energies in ferromagnetic systems
such as parameters of a classical Heisenberg model, was claimed to be limited
to infinitesimal rotations only [9]. The use of the vertex-cancellation theorem
allows to reduce the computational time in first-principles calculations by al-
most two orders of magnitude, so that the computational effort for disordered
systems is comparable to that for a pure system [15]. We refer the reader to
Appendix A for more details concerning the derivation and applicability of the
vertex-cancellation theorem. The last remark concerns the fact that the expres-
sion for the change in the grandcanonical potential within the magnetic force
theorem also includes the classical magnetostatic dipole-dipole interaction energy
(DDIE). The DDIE decays with a spacer thickness much faster than the IEC and
its contribution can be thus neglected for thicker spacer anyhow. In addition,
first-principles fully-relativistic calculations of the IEC [32] have demonstrated
that this term has a negligible influence even for a rather thin spacer amoun-
ting just to a few layers. Consequently, the DDIE term will be neglected in the
following.

2.5 Lloyd Formula

We need to evaluate the difference of configurationally averaged grandcanonical
potentials in the rotated and FM configurations. This can be done conveniently
with the help of the well-known Lloyd formula [11] applied to layered systems.
We formally split the system into two non-interacting fragments, namely a left
fragment L, which consists of the left substrate and the left magnetic slab, and
a right fragment R, which comprises the rest of the system, i.e., the spacer,
the right magnetic slab, and the right substrate (or, eventually, the cap layer
interfacing the vacuum). Fragments are described by the unperturbed Green
function 〈g0(z)〉. In the next step we couple two fragments together with help of
a localized potential V which is simply the interlayer screened structure constant.
This procedure has a number of advantages as compared to a conventional way
of embedding two finite magnetic layers into the infinite (bulk) host spacer [12]:
(i) the perturbation V is independent of the thicknesses of magnetic layers; (ii)
complicated sample geometries can be treated, including semi-infinite magnetic
layers; and (iii) a powerful and efficient method exists for the evaluation of the
Green function of fragments, namely the surface Green function technique in the
principal-layer formulation [26,27].
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Keeping in mind the vertex cancellation theorem, one gets for a difference in
the configurationally averaged grandcanonical potential (14), the expression

〈δΩ〉 = − 1
π
Im

∫
C

f(z, T, µ) Tr ln (1 − V 〈g0(z)〉) dz , (15)

where 〈g0(z)〉 is the configurationally averaged Green function of the decoupled
non-interacting fragments L and R defined above. For the sake of simplicity, we
will denote from here on the configurationally averaged quantities by an overbar,
e.g., 〈g0(z)〉 ≡ ḡ0(z). The concept of principal layers (PL) [33] as used within the
TB-LMTO method leads to a block tridiagonal form of the structure constants
and of the inverse Green function. If we apply this tridiagonality to (15), we get
for V and 〈g0(z)〉 the following expressions by using a supermatrix notation with
respect to nearest-neighbor PLs resolved in the wave-vector k‖,

V (k‖) =
(

0 S10(k‖)
S01(k‖) 0

)
, ḡ0(k‖, z) =

(
ḠL(k‖, z) 0

0 ḠR(k‖, z)

)
, (16)

where S10(k‖) =
[
S01(k‖)

]†. Combining (15) and (16) one gets

δTr ln Ḡ(z) = − 1
N‖

∑
k‖

tr ln
[
1 − Γ̄L(k‖, z) ḠR(k‖, z)

]
, (17)

Γ̄L(k‖, z) = S10(k‖) ḠL(k‖, z)S01(k‖) .

Here the quantity Γ̄L(k‖, z) has the meaning of an effective embedding potential,
and the quantities ḠL and ḠR are the configurationally averaged surface Green
functions (SGF) [33] of the magnetic subsystems L and R, respectively. By
definition, the surface Green function ḠS (S = L,R) is the top PL projection of
the Green function of the corresponding semi-infinite system S. Its determination
in the case of random systems was extensively discussed in the literature, see
[34–36,26]. The summation in (17) extends over the surface Brillouin zone (SBZ)
corresponding to the underlying two-dimensional translational symmetry [37],
and N‖ is the number of sites in a layer.

2.6 The IEC for a General Angle θ

Let us now turn to the evaluation of the energy difference between arbitrary
alignments. Consider the following quantity,

tr ln Z = tr ln (1 − A0 B) − tr ln (1 − A0 B0) , (18)

where the matrices A0 and B0 are related to the ferromagnetic alignment and
thus are diagonal in spin space

A0 =
(
A↑

0 0
0 A↓

0

)
, B0 =

(
B↑

0 0
0 B↓

0

)
. (19)
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The particular form of the subblocks Aσ0 and Bσ0 (σ =↑, ↓) is given by

Aσ0 = S10(k‖) ḠσL(k‖, z)S01(k‖) , Bσ0 = ḠσR(k‖, z) . (20)

The matrix B refers to an alignment in which the orientations of the magne-
tization in two magnetic slabs are rotated uniformly by a relative angle θ,

B = U(θ) B0 U†(θ) , (21)

where U(θ) is the rotation matrix (11). The quantity 1 − A0 B in (18) can the-
refore be written as

1 − A0 B =
(
U(θ) − A0U(θ)B0

)
U†(θ) , (22)

where, as follows from (19) and (11),

U(θ) − A0 U(θ) B0 =
(
c (1 − A↑

0 B↑
0) s (1 − A↑

0 B↓
0)

−s (1 − A↓
0 B↑

0) c (1 − A↓
0 B↓

0)

)
. (23)

Using now the identity tr ln X = ln det X, which is valid for any non-singular
matrix X, and the identity

det
(
A B
C D

)
= detA .detD .det(1 − A−1 BD−1 C) , (24)

which in turn is valid, if the matrices A and D are non-singular, it is straight-
forward to prove that

tr ln Z = trL ln
(
1 − 1 − cos(θ)

2
M

)
, (25)

where

M = 1 − (1 − A↑
0 B

↑
0)

−1 (1 − A↑
0 B

↓
0) (1 − A↓

0 B
↓
0)

−1 (1 − A↓
0 B

↑
0) . (26)

It should be noted that in (18) tr denotes the trace over angular momenta and
spin, while in (24) trL denotes the trace over orbital momenta only. The final
expression for Ex(θ) is thus given by

Ex(θ) =
1
πN‖

∑
k‖

Im
∫
C

f(z, T, µ) ×

trL ln
(
1 − 1 − cos(θ)

2
M(k‖, z)

)
dz , (27)

in which the energy integral is expressed in terms of a contour integral which
will be discussed in detail later.
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It is interesting to note that the expression (26) for M(k‖, z) can be rearran-
ged in the following form [19]

M = −
(
1 − S10 Ḡ↑

L S01 Ḡ↑
R

)−1
S10

(
Ḡ↑

L − Ḡ↓
L
)

×(
1 − S01 Ḡ↓

R S10 Ḡ↓
L
)−1

S01

(
Ḡ↑

R − Ḡ↓
R

)
. (28)

It explicitly factorizes the ’spin-asymmetry’ of the problem and it is directly
related to RKKY-like theories [1]. This result [19] is formally equivalent to the
results of the spin current approach [39] as formulated within a Green function
formalism based on an empirical single orbital tight-binding model [40]. A matrix
version developed in the framework of a semiempirical tight-binding model has
appeared recently [2].

For completeness we also give the result for the common case of the antifer-
romagnetic alignment (θ = π):

Ex ≡ Ex(π) =
1
πN‖

∑
k‖

Im
∫
C

f(z, T, µ) trL lnM(k‖, z) dz , (29)

where M is a product of four terms,

M = (1 − A↑
0 B

↑
0)

−1 (1 − A↑
0 B

↓
0) (1 − A↓

0 B
↓
0)

−1 (1 − A↓
0 B

↑
0) . (30)

2.7 The Torque and Infinitesimal Rotations

The differential change in the grand canonical potential δΩ(θ) with respect to
a differential relative angle θ, −∂ δΩ(θ)/∂ θ, is usually called the torque. The
torque can easily be obtained by differentiating (27) with respect to the angle θ.
By definition one gets therefore

T (θ) = −∂Ex(θ)
∂θ

or Ex(θ) = −
∫ θ

0
T (θ′) dθ′ , (31)

whereby T (θ) follows immediately from (27)

T (θ) =
sin(θ)
2πN‖

∑
k‖

Im
∫
C

f(z, T, µ) ×

trL

[
M(k‖, z)

(
1 − 1

2
[1 − cos(θ)]M(k‖, z)

)−1
]
dz . (32)

By formally expanding the logarithm in (27) in powers of 1 − cos(θ), one can
cast the expression for Ex(θ) into the form

Ex(θ) = B1 [1 − cos(θ)] +
1
2
B2 [1 − cos(θ)]2 + . . . , (33)
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whereB1 andB2 are the so-called bilinear and the (intrinsic) biquadratic exchange
coupling coefficients, respectively,

B1 =
1

2πN‖

∑
k‖

Im
∫
C

f(z, T, µ) trL M(k‖, z) dz , (34)

B2 = − 1
4πN‖

∑
k‖

Im
∫
C

f(z, T, µ) trL [M(k‖, z)]2 dz .

It may be, however, more convenient to fit the exact expression (27) into the
form (33) by employing calculated values for θ = π/2 and θ = π [41]. We obtain

B1 =
Ex(π) + 2Ex(π/2)

2
, B2 =

Ex(π) − 2Ex(π/2)
2

. (35)

Of particular interest is the expansion of Ex(θ) for a small θ, i.e., when
1 − cos(θ) is a small parameter (the method of infinitesimal rotations (MIR)).
This approach becomes particularly relevant in the case when the spacer is a
magnetic metal or for complicated geometries, e.g., for so-called periodic multi-
layers.

2.8 The IEC as Interface–Interface Interaction

We will now discuss briefly an alternative approach of a direct evaluation of the
IEC as a difference in the interface-interface interaction energies rather then its
indirect determination in terms of the energy of a single interface (13-16). We
decouple the system into three fragments, a left, central, and right fragment, L, C,
and R, respectively. The left and the right fragment are formed by corresponding
substrates with magnetic slabs whereby the central slab comprises the spacer.
Both approaches are physically equivalent because it is irrelevant how the system
is divided into an unperturbed part and a perturbation. Note, however, that
the interface-interface formulation is more general as it could be used for a
determination of interaction energies of two generally different interfaces.

The derivation proceeds in two steps and employs partitioning technique with
respect to the trace of the logarithm of the Green function. First, the subsystems
L and R are downfolded which leads to an effective problem of two localized
perturbations in the subsystem C. The second step, a two-potential formula
applied to the fragment C separates directly the interface-interface contribution.
The result has formally the same structure as the previous one (17,26), but the
subblocks Aσ0 and Bσ0 (σ =↑, ↓) are now of the following form

Aσ0 = ḡN1(k‖, z) τ̄σ1 (k‖, z) ḡ1N (k‖, z) , Bσ0 = τ̄σN (k‖, z) . (36)

The τ -matrices τ̄i (i = 1, N) corresponding to ”multiple scattering” at individual
interfaces L/C, (i = 1) and C/R, (i = N) are expressed as

τ̄σi (k‖, z) = Γ̄ σi (k‖, z)
[
1 − ḡii(k‖, z) Γ̄ σi (k‖, z)

]−1
, (37)



324 Josef Kudrnovský et al.

where the effective embedding potentials Γ̄ σi (k‖, z) of the left and right interfaces
(i = 1, N), respectively, are defined as

Γ̄σ1 (k‖, z) = S10(k‖) ḠσL(k‖, z)S01(k‖) , (38)
Γ̄ σN (k‖, z) = S01(k‖) ḠσR(k‖, z)S10(k‖) .

Here, ḠσS (S = L,R) are the configurationally averaged SGFs of the left and the
right semi-infinite regions, respectively. Details of the derivation can be found
in Appendices B and C. The coupling between the two magnetic subsystems is
due to the layer off-diagonal projections ḡ1N (k‖, z) and ḡN1(k‖, z) of the Green
function (GF) of the finite spacer consisting of N layers. The oscillatory behavior
of interlayer coupling is then governed by the oscillatory behavior of these quasi
one-dimensional spacer Green functions, a formulation which is very much in
the spirit of a simplified RKKY approach [1]. An efficient method of evaluation
of the corner-blocks of the Green function, ḡij(k‖, z), (i, j = 1, N), is described
in Appendix D [42,36].

2.9 Relation to the KKR Method

We shall discuss now the relation of the present approach (29,30,36) to the me-
thod employed in [12] and based on the Korringa-Kohn-Rostoker (KKR) Green
function technique. Let us note first the deep internal connection between the
KKR and the TB-LMTO-GF approach (see [26,43] for more details). The model
in (12) consists of an infinite ideal non-magnetic spacer as a reference system
and of two magnetic slabs representing localized perturbations. For simplicity
we start from the case of two magnetic monolayers in an infinite spacer. The
result

Aσ0 = GbN1(z)(k‖, z) tσ1 (k‖, z)Gb1N (k‖, z) , Bσ0 = tσN (k‖, z) (39)

is formally the same with the exception that the τ -matrices entering (36) are
now substituted by the single-site t-matrices ti which describe the scattering of
electrons from two magnetic monolayers at i = 1, N embedded in an infinite
non-random bulk spacer and separated by N − 2 spacer layers:

tσλ; i(k‖, z) = ∆P σλ; i(z)
[
1 + Gb(k‖, z)∆P σλ; i(z)

]−1
. (40)

The strength of the scattering potential, ∆P σλ; i(z), is given by the difference
of the potential functions for the magnetic monolayer Pσλ; i(z) and for the non-
magnetic spacer P (z), while Gb(k‖, z) is the layer diagonal block of the GF of
the bulk spacer. The layer off-diagonal blocks of the bulk spacer GF, Gb1N (z) and
GbN1(z), are given by

Gb1N (k‖, z) =
[
Gs(k‖, z)S01(k‖)

]N−1 Gb(k‖, z) , (41)

and similarly for GbN1(z). Here, Gs(k‖, z) is the corresponding SGF of an ideal
semi-infinite non-magnetic bulk spacer [33]. It should be noted that also the
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layer-resolved bulk Green function Gb(k‖, z) can be expressed in terms of the
SGFs (see, e.g., [34]). Since (41) is exact, there is no need to perform an addi-
tional k⊥-integration [12]. It is easy to show that the result is formally identical
to the case of two impurities in a simple tight-binding linear chain model with
nearest neighbor hopping.

A generalization to the case of magnetic slabs containing a finite number
M of magnetic layers is formally straightforward [12]. The t-matrices tσλ;i(z) are
then supermatrices with respect to angular momentum and layer indices and
the numerical effort to evaluate (40) increases with the third power of M as
contrasted with the results of the present approach (17,36) which depend only
linearly on M.

2.10 Influence of External Periodicity

Until now it was assumed implicitly that we have a simple ”parent” lattice [37].
The periods of the coupling oscillations are closely related to the Fermi surface
geometry [1,2] of the bulk spacer. A different translational symmetry (complex
lattices) or stacking sequence within layers will thus tend for sufficiently thick
spacers to a different kind of bulk periodicity and hence to new periods. For
example, an alternating stacking of fcc(001)-layers Cu and ordered c(2 × 2)-
CuAu layers tends to an ordered fcc-Cu3Au alloy with a Fermi surface topology
different from that of fcc-Cu spacer. For a discussion of ”superlattice” formation
in magnetic multilayers see also [38]. We will discuss in the following in some
detail two possibilities, namely superstructures in the spacer and in the magnetic
slabs.

We start with the former case by assuming the same geometry as discussed
in Sec. 2.1 but now the spacer slab consists of two non-magnetic metals A and
B with respective thickness nA and nB periodically alternating. Typically, the
spacer layer starts with the layer A(B) and ends with the layer B(A), but the ter-
mination of the spacer slab with the same layers is also possible (and interesting
[22]). The particular case of nA = nB = 1 corresponding to an (001)-stacking
of an ordered fcc-CuAu alloy was already treated on a first-principles level [22].
The more general case, (nA, nB > 1), which corresponds to artificially grown
superstructures, was treated only within a simple one-band model [44]. In both
cases, new periodicities (in comparison with the spacers consisting from pure
A or B metals) arise with an increasing number of repetitions. Alternatively,
one can consider a superstructure within a given spacer layer, or combination of
both, e.g., the above mentioned example of the ordered fcc-Cu3Au alloy spacer.
The similar situation can be encountered also in the magnetic slabs. In particular
the case of a c(2×2)-CoFe periodicity within the magnetic layers separated by a
fcc-Cu(001) spacer [20] leads to the rather surprising appearance of new periods.
These new periods can be now correlated to critical points of the spacer Fermi
surface folded down to the Brillouin zone corresponding to a c(2×2)-superlattice
[20]. A correlated gradual appearance of new periods and the order in statisti-
cally disordered layers is a clear indication of their relation to a different bulk
periodicity [20,22].
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A special case of alternating layers of A and B metals is when one of metals
is magnetic and the other is nonmagnetic, all of which sandwiched between two
substrates. This is the case of a periodic multilayer.

The generalization of the present formalism to above discussed cases is rather
straightforward. In the case of a superlattice within a layer it is just sufficient
to substitute matrices appearing in (27,29) by the corresponding supermatrices,
e.g., by (2 × 2)-supermatrices in the case of a c(2 × 2)-superlattice. The key
quantity, the surface Green functions ḠσL,R (20), can be easily evaluated also in
this case (see for details [26]). The generalization of the formalism to the case
of alternating layers from A and B metals is as well simple because the surface
Green function is constructed in an epitaxial manner, i.e., layer by layer, and it
is therefore immaterial if the stacking of layers consists of the same or a different
material. In the limit of a periodic multilayer we should just keep in mind that a
proper repeating unit consists now from four layers, namely S−M−S−M , where
the symbols S and M refer to the spacer and magnetic layers, respectively. This
is necessary to calculate the F and AF configurations needed for the evaluation
of the IEC. We note that the present formalism allows to evaluate efficiently
and reliably the IEC for thick spacers (one hundred layers and more) which is
important for realistic studies of so-called superlattice spacers and of periodic
multilayers.

2.11 Temperature-Dependence of the IEC

We conclude this section by reviewing a recently developed technique for an
efficient evaluation of the temperature dependence of the IEC [16]. The main
cause for the temperature dependence of the IEC is connected with thermal
excitations of electron-hole pairs across the Fermi level as described by the Fermi-
Dirac function. It turns out that other mechanisms (as for example electron-
phonon and electron-magnon interactions) are less important. We rewrite (29)
into the following form

Ex(T ) = Im I(T ) , I(T ) =
∫
C

f(z, T, µ)Ψ(z) dz , (42)

where

Ψ(z) =
1
πN‖

∑
k‖

trL lnM(k‖, z) , (43)

with the energy integration performed over a contour C along the real axis and
closed by a large semicircle in the upper half of the complex energy plane.

The integral in (42) can be recast into a more suitable form using the analytic
properties of Ψ(z), namely, (i) Ψ(z) is holomorphic in the upper half of the
complex halfplane, and (ii) zΨ(z) → 0 for z → ∞, Imz > 0. Let us define a new
function Φ(y) = −i Ψ(EF + iy) of a real variable y, y ≥ 0. Then at T = 0 K,

I(0) =
∫ +∞

0
Φ(y) dy , (44)
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while at T > 0 K,

I(T ) = 2πkBT
∞∑
k=1

Φ(yk) , (45)

where kB is the Boltzmann constant and the yk are Matsubara energies, yk =
πkBT (2k − 1). In the limit T → 0, I(T ) → I(0) continuously.

We have verified that the function Φ(y) can be represented accurately as a
sum of a few complex exponentials of the form

Φ(y) =
M∑
j=1

Aj exp(pjy) , (46)

where the Aj are complex amplitudes and the pj are complex wave numbers.
An efficient method of finding the parameters Aj and pj is described elsewhere
[16]. The evaluation of I(T ) is then straightforward:

I(T ) = −2πkBT
M∑
j=1

Aj
exp (πkBTpj) − exp (−πkBTpj)

, (47)

which for T = 0 K gives

I(0) = −
M∑
j=1

Aj
pj
. (48)

The efficiency of the present approach allows to perform calculations with a large
number of k‖-points in the irreducible part of the surface Brillouin zone (ISBZ)
in order to obtain accurate and reliable results. Note also that such calculations
have to be done only once and then the evaluation of the IEC for any reasonable
temperature is an easy task.

The effect of finite temperatures on the IEC can be evaluated also analyti-
cally. The analytical approach assumes the limit of large spacer thickness, for
which all the oscillatory contributions to the energy integral cancel out with
exception of those at the Fermi energy. The energy integral is then evalua-
ted by a standard saddle-point method [1]. The general functional form of the
temperature-dependence of the interlayer exchange coupling Ex(T ) in the limit
of a single period is then given by

Ex(T ) = Ex(0) t(N,T ) , t(N,T ) =
cNT

sinh(cNT )
. (49)

Here, N denotes the spacer thickness in monolayers, and c is a constant which
depends on the spacer Fermi surface. The term Ex(0) exhibits a standard N−2-
dependence [1], while the scaling factor t(N,T ) depends on the product N and
T . In the preasymptotic regime (small spacer thickness) the functional form of
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t(N,T ) differs from that of (49), particularly in the case of a complete, but rela-
tively weak confinement due to the rapid variation of the phase of the integrand
which enters the expression for the IEC [45]. The present numerical technique is
free of the above discussed limitations and can be used to check conclusions of
model theories.

3 Numerical Results and Discussion

3.1 Details of Calculations

Special care has to be devoted to the energy and the Brillouin zone integrations.
For a finite temperature we determine the parameters of the complex exponenti-
als in (46) through an evaluation of Φ(y) at 40 Matsubara energies corresponding
to T = 25 K. We have verified that the results depend weakly on the actual value
of the parameter T . For T = 0 K we have tested two energy contours C, namely
a semicircle between the bottom of the band (Emin) and EF , or, alternatively,
a line contour EF + i ε, ε ∈ (0,∞), using a Gaussian quadrature. The results
were very similar in both cases. Using a line contour avoids possible problems
connected with the phase of a complex logarithm. Typically a total of 10-15
energy points was used. A large number of k‖-points in the ISBZ is needed only
for energy points close to the real axis, whereby generally a greater number is
needed for lower temperatures and thicker spacers. The number of k‖-points can
significantly be reduced for energies well off the real axis. In particular, for the
first energy point on the contour close to the Fermi energy we typically use 5000-
10000 k‖-points in the ISBZ, while for the next 3-4 energy points the number
of k‖-points is reduced by a factor two for each other point, and about 50-100
k‖-points are taken for all remaining energy points on the contour. The thickness
of the spacer, for which well converged results are obtained, is about 100 spacer
layers.

3.2 Analysis of the Results

The calculated results, namely Ex(θ,N), where N specifies the spacer thickness,
can be analyzed in terms of a discrete Fourier transformation

F (θ, q) =
1
p

Nmax∑
N=Nmin

N2Ex(θ,N) exp(iqN) , (50)

where p = Nmax − Nmin + 1 is the number of values used in the Fourier ana-
lysis, and Nmin is chosen in order to eliminate the effect of very thin spacers,
or, to analyze intentionally either the preasymptotic or the asymptotic region.
Typically p is about 40. The background oscillations thus occurring [14] are due
to the discreteness of the Fourier transformation. The background oscillations
can be smoothened using the procedure described in [46], namely by multip-
lying N2Ex(θ,N) by C sin(πN/p)/(πN/p), where C is a normalization factor.
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The periods of oscillations Λα (in monolayers) are then identified with the po-
sitions qα of pronounced peaks of |F (qα)| as Λα = 2π/qα, the amplitudes of
oscillations Aα are estimated from Aα = (2/p)|F (qα)|, and their phases from
φα = π/2 − ArgF (qα), (α = 1, 2, . . . ). This analysis can be extended to more
complicated cases, namely when the IEC is a function of two variables, e.g.,
as a function of the spacer and cap thicknesses N and P , respectively. A two-
dimensional discrete Fourier transformation

F2(θ, qN , qP ) =
N2∑

N=N1

P2∑
P=P1

(N + P )2 E2(θ,N, P ) ei(qNN+qPP ) (51)

is a suitable tool to analyze the quantity E2(θ,N, P ), where the prefactor (N +
P )2 is consistent with the asymptotic behavior [23,47] for large spacer and cap
thickness. Strictly speaking, this is quite an obvious choice for the case when
the spacer and cap are formed by the same material, but it can be used also
when the spacer and the cap correspond to different materials (for more details,
see [23]). In (51) we have introduced the quantity

E2(θ,N, P ) = Ex(θ,N, P ) − E0(θ,N) , E0(θ,N) = lim
P→∞

Ex(θ,N, P ) (52)

in order to remove a trivial peak in the absolute value of F2(θ, qN , qP ) at qN =
qP = 0. A similar two-dimensional discrete Fourier transformation is also useful
in the study of the IEC with respect to the thicknesses of the spacer and the
magnetic slabs. We note that if one of variables, e.g., the spacer thickness N
is fixed, it is possible to analyze the calculated IEC values again with the help
of (50).

An alternative of calculating the Fourier transform (50) consists in subdivi-
ding the k‖-integral in (27) into areas around the critical k‖-vectors (callipers)
related to the different oscillation periods [30,49]. In the asymptotic limit each
subarea gives then rise to a single oscillation period, while in the preasymptotic
regime the resulting division into different periods is only qualitatively valid. In
a sense this method bridges the present method of discrete Fourier transforma-
tions and the purely asymptotic treatment of calculating only the behavior of
the critical k‖-vectors (see Section 3.3).

3.3 Asymptotic Expansion

Model studies [1,2] indicate that in the asymptotic region, i.e., for large spacer
and magnetic layer thickness, and for a random sample, the general form of the
spacer-thickness dependence of the IEC is given by

Ex = Im
∑
α

Zα
N2 exp(iQαN) . (53)

Here the sum runs over all possible periods α, the quantities Zα and Qα are
the complex amplitudes and complex stationary points (callipers), respectively,



330 Josef Kudrnovský et al.

defined in the following manner

Zα = Aα exp(iΦα) , Qα = qα + iλα . (54)

The quantities Aα and Φα are the amplitudes and phases of coupling oscillations,
pα = 2π/qα their periods, and the quantity λα characterizes the damping of
oscillations due to the effect of alloying in the sample determined at the Fermi
energy. In the limit of non-random samples, λα = 0.

The parameters in (53) can be extracted from a detailed knowledge of the
spacer Fermi surface [7]. We briefly sketch a numerical way of determining of
the parameters of this asymptotic expansion which requires the knowledge of
the integrand of (29) for a set of k‖-points in the neighborhood of the stationary
points k(α)

‖ .
The expression (29) for IEC at T = 0 K can be rewritten as

Ex =
1
N‖

Im
∑
k‖

Y (k‖) , Y (k‖) =
1
π

∫
C

f(z, 0) trL lnM(k‖, z) dz . (55)

The integration with respect to the energy variable is performed numerically.
The function Y (k‖) for large N decreases as O(1/N) and behaves like

Y (k‖) =
g(k‖)
N

exp(iNφ(k‖)) , (56)

where the pre-exponential factor g(k‖) is a smooth function of k‖ and the phase
φ(k‖) has one, or more stationary points in the SBZ that correspond to callipers
of the spacer Fermi surface such that ∇k‖φ(k‖) = 0. The integral over the SBZ in
(55) can be evaluated using the stationary-phase method. The contribution of a
stationary point k(α)

‖ ≡ (k(α)
x , k

(α)
y ) is found in the following way: the integration

limits are extended to infinity, and the phase function φ(k‖) is approximated by
a quadratic function of k‖ ≡ (kx, ky) in the vicinity of the stationary point,

φ(k‖) = φ(k
(α)
‖ ) +

∑
i,j=x,y

Qij(ki − k(α)
i )(kj − k(α)

j )

=
∑
i,j=x,y

Qijkikj +
∑
i=x,y

Piki + φ(k
(α)
‖ ) . (57)

The expansion coefficients Qij , Pi, and φ(k
(α)
‖ ) are determined by a least-square

fit to values of φ(k‖) calculated in the vicinity of k(α)
‖ . This procedure allows

to eliminate numerical inaccuracies with respect to both the values of Qij and
the position of the stationary point k(α)

‖ , and it is applicable even for disordered
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surfaces. By inserting (56) and (57) into (55) we find

Ex ≈ 1
πNVSBZ

Im

{
g(k(α)

‖ ) ×

∫∫
D

exp
[
iN

(
φ(k(α)

‖ ) +
∑
i,j=x,y

Qij(ki − k(α)
j )(kj − k(α)

j )
)]

dkx dky

}

=
π

N2VSBZ
Im

{
g(k(α)

‖ )√
−det |Q|

exp
[
iNφ(k(α)

‖ )
]}
, (58)

where the two-dimensional integration region D extends to infinity, and VSBZ
denotes the volume of the SBZ. The second line in (58) is obtained by diagona-
lizing the quadratic form in the exponent (57) and by evaluating the resulting
one-dimensional Gaussian-like integrals. The identification of the parameters is
now straightforward, namely

Zα =
π

VSBZ

g(k(α)
‖ )√

−det |Q|
, Qα = φ(k(α)

‖ ) . (59)

3.4 Free-Electron Limit

The numerical efficiency of the present formalism offers an interesting possibility
of testing model theories [1]. The simplest of such models is the free-electron
model, because of a spherical Fermi surface with a single critical vector at k‖ = 0
and a trivial correspondence between the value of the oscillation period and
the band-filling. The free-electron model can be easily simulated by the present
formalism by replacing the true metallic potentials by flat potentials (the empty-
sphere model). For a suitable choice of the lattice constant and the position of
the Fermi energy it is irrelevant what lattice and layer stacking is used, e.g.,
the fcc(001)-stack is the simplest choice. Such a model is free of the limitations
usually adopted [1], e.g., the assumption of large spacer and magnetic slabs
thicknesses, or the approximate evaluation of the energy integral for the case of
finite temperatures.

3.5 Numerical Illustrations

In Fig. 1 N2Ex(N) is displayed as a function of the spacer thickness N for two
semi-infinite Co(001) subsystems sandwiching an fcc-Cu spacer. The correspon-
ding discrete Fourier transformation in Fig. 2 shows a pronounced short-period
oscillations of 2.53 monolayers (MLs) while the long-period oscillations are sup-
pressed in this geometry [13,14,49]. The results are insensitive to the choice of
the lower and upper index in the summation in (50) provided the preasymptotic
region is excluded [14].

For a large enough N the IEC can be approximated by the asymptotic form
in (53). The amplitude, phase, and the wave-vector entering this expression can
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Fig. 1. Exchange coupling N2Ex(N) at T = 0 K as a function of the spacer thickness
N for two semi-infinite fcc Co(001) subsystems sandwiching a Cu spacer. Diamonds
refer to the calculated values, the full line (back Fourier transform) serves as a guide
to the eye

be determined from the calculated Ex(N) in the manner as described in Sect. 3.2
and the asymptotic result (53) was compared with the calculated results for a
large set of systems including both ideal and alloyed semi-infinite fcc(001) ma-
gnetic subsystems sandwiching a Cu-spacer: overall good agreement was found
[21]. An example of the complex amplitude for this case is presented in Fig. 3
illustrating the insensitivity of the phase to elements which form the magnetic
layers. It is seen that phases corresponding to Co, Fe50Ni50, and Fe1/3Ni1/3Co1/3
which have the same average electron numbers Nel=9 are nearly the same [21].

The IEC depends on the temperature T via a factor x/sinh(x), x = cNT ,
where T is the temperature and N the spacer thickness. This remarkable result
of model theories [1] was verified by calculations such as illustrated in Fig. 4.
The IEC depends in an oscillatory manner not only on the spacer thickness N
but as well on the thickness P of a covering cap. The oscillations are around a
biased value which corresponds to coupling for a given spacer thickness assuming
a semi-infinite cap. This phenomenon is illustrated in Fig. 5 in terms of discrete
Fourier transformations with respect to the spacer and the
cap thickness (see Sec. 3.2) for a sample consisting of a semi-infinite fcc-Cu(001)
substrate, left and right magnetic layers each five MLs thick, a spacer with
varying thickness N , and a Cu-cap of varying thickness P . Fig. 5 shows: (i)
long-period oscillations (missing in Fig. 2) in addition to the short-period ones,
and (ii) oscillations with respect to the cap thickness which are exactly the same
as for the spacer because both are controlled by the same Fermi surface, namely
that of fcc-Cu. The more complicated case of different spacer and cap materials
is discussed in [23,24].
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Ordering in the spacer [22] or in the magnetic layers [20] can induce new
periods due to the formation of two-dimensional sublattices. The situation is
particularly interesting for a c(2 × 2)-ordering in magnetic layers sandwiching
an ideal Cu-spacer [20]. As illustrated in Fig. 6 for full ordering two new periods
with complementary periods and phases are formed in addition to a conventio-
nal short-period due to a fcc-Cu spacer [20]. These new periods vanish in the
completely disordered case.
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Finally, the effect of disorder in the spacer [19] is illustrated in Fig. 7. Alloying
of Cu with Ni decreases the number of average valence electrons and leads to a
contraction of the alloy Fermi surface, and in turn to a reduction of the coupling
oscillations. The opposite behavior has to be expected for alloying of Cu with
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Fig. 6. Absolute values of the discrete
Fourier transformation of N2 Ex(N) for
two semi-infinite fcc Co50Fe50(001) sub-
systems sandwiching a Cu spacer with
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line), (c) S = 0.5 (dashed-dotted line),
and (d) S = 0.0 (disordered case, dotted
line). The temperature is T = 0 K

Zn, whereas only a small concentration dependence of the periods for the CuAu
case is seen. The amplitudes of the oscillations are generally reduced by alloying,
and in the case of CuZn spacer they are even
exponentially damped. The different behavior of the amplitudes can be related
to differently large disorder in the neighborhood of relevant extremal points of
the alloy Fermi surfaces.

3.6 Some Published Applications

We briefly review applications of the formalism developed in previous sections
to specific problems. Additional details concerning formalism and not discussed
here in details, e.g., the expansion of the IEC expression in terms of the small
parameter 1 − cos(θ) or the details concerning the numerical verification of the
vertex-cancellation theorem, can be found in [14,15], respectively. The influence
of surface roughness (fluctuating spacer thickness and diffusion at the interface
between spacer and magnetic layers) on the oscillation amplitudes was studied
in [18]. The effect of alloying in the spacer [19] on the oscillation periods and their
amplitudes, and in magnetic layers [21] on the oscillation amplitudes and phases
was also studied in detail for the trilayer system Co/Cu/Co(001). Ordering in
disordered spacers [22] and/or magnetic [20] layers lead to a formation of new
periods not present in ideal spacers. Oscillations of the IEC can originate not
only due to the spacer but also from adlayers or cap layers. We refer the reader
interested in this problem to a recent detailed study [23,24]. Finally, the study
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of the temperature dependence of the IEC and of the combined effect of the
temperature and disorder is subject of very recent papers [16,17], respectively.

4 Conclusions

We have derived closed expressions for the exchange coupling between two ma-
gnetic subsystems separated by a non-magnetic spacer with a relative angle θ
between the orientations of the magnetizations in the magnetic slabs. The de-
rivation is based on a surface Green function formalism. The numerical effort
scales linearly with the thickness of both the spacer and the magnetic slabs. The
formulation allows also for an efficient evaluation of the temperature depen-
dence of the coupling amplitudes. Numerical examples were chosen to illustrate
the theoretical aspects rather than to give a comprehensive overview of results
obtained by the present formalism or by related methods.
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We wish now briefly to mention some unsolved problems. The following list
is neither complete nor are the problems listed according to their importance:
(i) The oscillatory dependence of the IEC on the thickness of the magnetic slabs
was not yet systematically investigated on an ab initio level. Existing calcula-
tions [14,48,49] were performed for too thin magnetic slabs to relate occurring
oscillations to extremal points of spin-polarized Fermi surfaces; (ii) The problem
of biquadratic and higher order terms also did not receive a proper attention on
an ab initio level. A relevant problem is a systematic study of situations for which
the non-collinear (biquadratic) coupling can dominate. Obviously, it can happen
most probably for the spacer thicknesses for which the IEC values are close to
the transition between the F and AF couplings [41]. In addition, it remains to be
seen whether a theoretical description of biquadratic coupling has to be based
on a fully relativistic spin-polarized level; (iii) The study of superstructures in
the spacer and/or in the magnetic slabs (see Sec. 2.10) offers a possibility of
a deeper insight into the physical nature of the IEC because of new periods,
which are connected with the extremal vectors of the spacer material in a more
sophisticated manner than in the canonical cases of Cu or Cr spacers; (iv) The
study of oscillatory behavior of exchange interaction across magnetic spacers is
of great interest. One possibility here is to employ the method of infinitesimal
rotations [9,14]; (v) The study of exchange coupling through the semiconducting
or, more generally, through an insulating spacer where one expects exponential
rather than N−2-decay has remained limited until now to model studies [1]; (vi)
The study of alloying in the spacer, magnetic layers and at interfaces has to be
extended to new interesting systems. It offers a straightforward method to ob-
tain valuable informations concerning alloy Fermi surfaces, in particular for the
case of alloyed spacers; and, finally (vii) The study of the IEC through spacers
with complex Fermi surfaces, in particular through the transition metal spacers.
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5 Vertex Cancellation Theorem

We present here a general discussion of exchange interactions in the presence of
substitutional disorder. The results given here are used in the present paper to
study interlayer exchange interactions, but they are also applicable for studying
exchange interactions within a ferromagnet, exchange stiffnesses, spin-wave en-
ergies, etc. The principal result is the “vertex cancellation theorem” of Bruno et
al. [15]. In here we give an alternative, more general, derivation of this result.
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Let û ≡ {ûR} be a particular configuration of the local moments, where
ûR is a unit vector pointing in the direction of the R-th local moment. We are
interested in the variation of the thermodynamic grandcanonical potential

Ωû = − 1
π

Im
∫ +∞

−∞
f(E, T ) Tr

〈
ln gû(E + i0+)

〉
dE (60)

with respect to û. The Green function gû(z) for a particular alloy configuration
is defined from the potential function Pû(z) corresponding to û as

gû(z) = (Pû(z) − S)−1
. (61)

An immediate consequence of (61) is a trivial commutator relation to be used
below, namely

[Pû(z); gû(z)]− = [S; gû(z)]− , (62)

where [A;B]− ≡ AB−BA. The configuration averaged Green function 〈gû(z)〉 ≡
gû(z) is usually formulated in terms of the coherent potential function Pû(z) as

gû(z) = (Pû(z) − S)−1
, (63)

which leads to a relation analogous to (62),

[Pû(z); gû(z)]− = [S; gû(z)]− . (64)

In general, the averaging in (60) cannot be reduced to ln gû(z) and an evaluation
of the so-called vertex corrections is necessary. We shall show, however, that the
variation of (60) due to an infinitesimal change of û takes a simple form.

Let us consider the variation of the potential functions Pû(z) in more detail.
To each lattice site R we associate a non-random vector ΘR ≡ θR n̂R, where
n̂R refers to the axis of rotation and θR to rotation angle by which the reference
orientation û0,R is transformed into ûR. The transformed potential functions
are therefore given by the following similarity transformation

Pû(z) = UΘ Pû0(z)U
−1
Θ , (65)

where the rotation matrix UΘ in (65) is defined as

(UΘ)RLs,R′L′s′ = δR,R′ δL,L′ ×[
cos

(
θR
2

)
l1 − i sin

(
θR
2

)
n̂R · σ

]
s,s′

. (66)

The symbol σ in (66) denotes the vector of the standard 2 × 2 Pauli matrices
and l1 is the 2 × 2 unit matrix. The first-order change of Pû,R(z) caused by an
additional infinitesimal rotation δvR is then expressed as

δPû(z) = [δK;Pû(z)]− , (67)
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where the matrix elements of the operator δK = Uδv − 1 are explicitly given by

(δK)RLs,R′L′s′ = δR,R′ δL,L′
(−i)
2

[σ · δvR]s,s′ . (68)

The introduced infinitesimal rotation vectors δvR satisfy Uδv UΘ = UΘ+δΘ whe-
reas, in general, UδΘ UΘ �= UΘ+δΘ. Let us note that δK is a non-random site-
diagonal operator.

The first-order variation of Tr 〈ln gû(z)〉 can be now formulated using (94,
67) as

δTr 〈ln gû(z)〉 = −Tr
〈
gû(z) [δK;Pû(z)]−

〉
, (69)

which can be rewritten by applying the permutation invariance of the trace and
(62, 64) as

δTr 〈ln gû(z)〉 = −Tr
{
δK

〈
[Pû(z); gû(z)]−

〉}
= −Tr

{
δK

〈
[S; gû(z)]−

〉}
= −Tr

{
δK [S; gû(z)]−

}
= −Tr

{
δK [Pû(z); gû(z)]−

}
. (70)

By using the permutation invariance of the trace once again, (70) can be given
the final form

δTr 〈ln gû(z)〉 = −Tr
{
gû(z) [δK;Pû(z)]−

}
. (71)

Let us note that (71) was derived in a formally exact alloy theory, but is valid in
the CPA as well. Within the CPA, the result (71) has an obvious interpretation:
the r.h.s. describes the variation of Tr ln gû(z) induced by performing on the site-
diagonal coherent potential functions Pû,R(z) the same rotations (68) as applied
to the potential functions Pû,R(z); note however, that this is not equal to the
infinitesimal change of the true self-consistent CPA coherent potential function.

Thus, the torque acting on the moment at site R due to the exchange inter-
actions is given by

Γû,R ≡ − δΩû

δvR
= − 1

π

∫ +∞

−∞
f(E, T ) ×

Im Tr
{
gû(E + i0+)

(−i)
2

[
ΠR σ ; Pû(E + i0+)

]
−

}
dE , (72)

where ΠR is a projector on site R. This exact result constitutes the “vertex
cancellation theorem” for the torque. Its usefulness arises from the fact that the
“vertex corrections” have been eliminated.

In order to compute the difference of thermodynamic grandcanonical poten-
tial between two local moment configurations û1 and û2 in the CPA, we use a
theorem due to Ducastelle [31], which states that the thermodynamic grandcano-
nical potential, considered as a functional Ω̃[P, P ] of the independent variables
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P and P , is stationary with respect to P when the latter satisfies the CPA
self-consistency condition. This means that a first-order error in Pû gives only a
second-order error in Ωû. Let us approximate Pû(z) by

Pû(z) ≈ P ′
û(z) ≡ UΘ Pû0(z)U

−1
Θ , (73)

i.e., we assume that Pû(z) is transformed like Pû(z) under a rotation of the local
moment direction. This can be expected to be a good approximation, provided
the condition

mR

∣∣∣∣dΘR

dR

∣∣∣∣ � kF qR (74)

is satisfied, where qR and mR are respectively the charge and spin moment at
site R. We then get

gû(z) ≈ g ′
û(z) ≡ (P ′

û(z) − S)−1
. (75)

Replacing Pû by P ′
û and gû by g ′

û in (71), we obtain

δTr 〈ln gû(z)〉 ≈ δTr ln g ′
û(z) , (76)

and integrating over the angles, we get

Ωû1 −Ωû2 ≈ − 1
π

∫ +∞

−∞
f(E, T ) ×

Im Tr
[
ln g ′

û1
(E + i0+) − ln g ′

û2
(E + i0+)

]
dE , (77)

which constitutes the “vertex cancellation theorem” for exchange energies. Note
that we have derived here a form of the “vertex cancellation theorem” within the
CPA since this is the scheme which is used in practical calculations; however,
one can prove that the same result holds if one takes the exact solution to the
configuration averaging problem.

In the case of interlayer coupling, the condition (74) is satisfied even for large
rotation angles, because dΘR/dR differs from zero only in a region where mR

is negligible. This was confirmed by explicit numerical calculations in [15].

6 The Interface–Interface Part of the Grandcanonical
Potential

In this Appendix we derive the basic relations for an evaluation of the IEC within
the interface-interface interaction formulation.

The subsystems L and R can be downfolded using the formula (88)

Tr ln (P − S) = TrL ln
[
P − S

]
+TrR ln

[
P − S

]
+ TrC ln

[
(P − S)CC − (P − S)CL

L
P − S (P − S)LC

− (P − S)CR
R

P − S (P − S)RC
]
. (78)
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The first two terms are independent of the rotation angle θ and, consequently,
they do not contribute to the exchange energy Ex(θ). We are thus left with
a quantity which is limited to the subspace C only. It is now easy to identify
the individual terms in (78). The potential function blocks between different
subspaces such as PLC or PCR are zero because the potential function P is site-
diagonal. The blocks of S between neighboring subspaces do not vanish, but the
non-zero subblocks connect only neighboring principal layers. The important
part of the Tr ln (P − S) is then reduced to

TrC ln (P − S)CC +TrC ln
[
1 − C

P − SS10GLS01 − C
P − SS01GRS10

]
. (79)

The first term is independent of θ and thus does not contribute to the exchange
energy. The second term can be simplified using the two-potential formula (93).
We identify G(0) = C/(P − S), v1 = S10GLS01, and v2 = S01GRS10. The t-
matrices are then identical with the τ -matrices, and the potentials v1 and v2 are
equal to the embedding potentials Γ1 and Γ2. In this way we find the expression
for the grandcanonical potential

Ω(θ, T, µ) = Ω0(T, µ)

− 1
π
Im

∫ ∞

−∞
f(E, T, µ) Tr1 ln

[
1 − g1N (z)τN (z)gN1(z)τ1(z)

]
dz , (80)

where Ω0(T, µ) contains all the terms independent of θ and the Tr1 applies only
to the layer 1, i.e., the first spacer layer. If the system is invariant with respect
to translations in the planes of atoms, or, if such a symmetry is restored by
configuration averaging, (80) can be written as

Ω(θ, T, µ) = Ω0(T, µ) − 1
π
Im

∫ ∞

−∞
f(E, T, µ) ×

∑
k||

tr ln
[
1 − g1N (k‖, z)τN (k‖, z)gN1(k‖, z)τ1(k‖, z)

]
dz , (81)

where tr means the trace over angular momentum indices L = (�m) and the spin
index σ.

7 Useful Mathematical Tools

Theoretical developments and many calculations are facilitated by the partitio-
ning technique and the two-potential formula applied to the Green function and
its logarithm.

Let P and Q denote projection operators onto the complementary subspaces
(i.e. P +Q = 1). We denote the projections of matrices as PAP = APP , PAQ =
APQ, etc., and P/A means the inversion of APP in the subspace referring to
projector P . In most applications, A = z−H or A = P (z)−S and G(z) = A−1.
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The projections of the inverse A−1 to the matrix A are given by [50]

(A−1)PP =
P

APP −APQQAAQP
, (82)

(A−1)QQ =
Q

AQQ −AQP PAAPQ
, (83)

(A−1)PQ = −P
A
APQ(A−1)QQ = −(A−1)PPAPQ

Q

A
, (84)

(A−1)QP = −Q
A
AQP (A−1)PP = −(A−1)QQAQP

P

A
. (85)

It is sometimes easier to invert the full matrix A than its blocks. In such a
case the inverse partitioning is useful

P

APP
= (A−1)PP

P

P −APQ(A−1)QP
=

P

P − (A−1)PQAQP
(A−1)PP . (86)

This can be used to calculate the surface Green function of a semi-infinite system
from the Green function of the infinite system.

Partitioning technique also allows to simplify calculations involving Tr ln of
a matrix. The basic relation is

Tr lnA = ln detA . (87)

It then follows Tr lnAB = Tr lnA+Tr lnB, Tr ln 1 = 0, Tr ln (A−1) = −Tr lnA,
and Tr ln [(A − B)−1] = −Tr lnA − Tr ln [1 − A−1B]. The Tr ln A can then be
partitioned as

Tr lnA = TrP ln [PAP ] + TrQ ln [QAQ−QAP
A
AQ]. (88)

To prove (88), let us multiply the matrix A by L = 1 − AQP (P/A) from left
and by R = 1 − (P/A)APQ from right. The result is LAR = APP + AQQ −
AQP (P/A)APQ. Now using (87), and the fact that det [L] = det [R] = 1 we find
(88). In a special, but important case, when APP = P and AQQ = Q it holds

Tr lnA = TrP+Q ln [P +Q+APQ +AQP ]
= TrP ln [P −APQAQP ] = TrQ ln [Q−AQPAPQ] . (89)

The Green function of a system described by the Hamiltonian H = H0+v1+
v2, where H0 is the unperturbed part, and vi(i = 1, 2) are perturbing potentials,
is given by G = G(0)+G(0)TG(0), where G = (z−H)−1, G(0) = (z−H0)−1, and
T = V (1−G(0)V )−1, where V = v1+v2. The full T-matrix T can be expressed in
terms of the t-matrices, ti = vi(1 −G(0)vi)−1, (i = 1, 2) and of the unperturbed
resolvent G(0) by the the two-potential formula

T = t1 [1 −G(0)t2G
(0)t1]−1 (1 +G(0)t2) + t2 [1 −G(0)t1G

(0)t2]−1 ×
(1 +G(0)t1) . (90)
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It is derived in the following way. Because

(1 −A)[1 − (1 −A)−1AB(1 −B)−1](1 −B) = 1 −A−B , (91)

it holds

Tr ln [1 −A−B] = Tr ln [1 −A] + Tr ln [1 −B]
+Tr ln [1 − (1 −A)−1AB (1 −B)−1] . (92)

By inserting A = G(0)v1 and B = G(0)v2 into (92) one obtains (90). The two-
potential formula for the Tr ln of the full Green function

Tr lnG = Tr lnG(0)[1 − V G(0)]−1

= Tr lnG(0) − Tr ln [1 −G(0)v1 −G(0)v2]
= Tr lnG(0) − Tr ln [1 −G(0)v1] − Tr ln [1 −G(0)v2]

−Tr ln [1 −G(0)t1G
(0)t2] (93)

follows directly from (92).
If the matrix A is a function of a variable z (complex in the general case),

the derivative with respect to z is given by

d

dz
Tr ln [A(z)] = Tr

[ d
dz
A(z)A−1(z)

]
, (94)

provided that the matrix A(z) is nonsingular. This identity is used to derive the
expression of the grandcanonical potential Ω in terms of the auxiliary Green
function (12) within the TB-LMTO.

The identity in (87) is valid up to an integer multiple of 2πi. Neglecting
this fact can lead to serious errors. There is no panacea for this kind of diffi-
culties, but in some situations they can be avoided, for example by choosing
the integration contour parallel to the imaginary axis, but this is not always
possible. In some cases the incremental procedure for calculating the ln det,
ln f(zk+1) = ln f(zk)+ ln [f(zk+1)/f(zk)] in the spirit of an analytical continua-
tion can be helpful, provided that the change of phase between two consecutive
points zk is less than 2π. To insure this, one has to choose a sufficiently small
grid in z.

8 Inversion of Block-Tridiagonal Matrices

We wish to compute g = A−1 for a block-tridiagonal A. The matrix A is divided
into N ×N square subblocks of the same dimension m, from which non-zero are
only Ak,k, Ak−1,k, and Ak,k−1. The diagonal blocks are a sum of two terms: her-
mitean matrix and a symmetric complex matrix. They are always non-singular.
The off-diagonal blocks under the diagonal are equal to hermitean conjugate of
the corresponding blocks above the diagonal (Ak,k−1 = A+

k−1,k). The methods
based on repeated use of partitioning are particularly efficient if only diagonal
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blocks, or four so-called ’corner’ blocks (g1,1, gN,N , g1,N , gN,1) are needed like in
the interlayer exchange coupling calculations.

First, four sequences of auxiliary matrices are calculated

XN−k = AN−k,N−k+1(AN−k+1,N−k+1 −XN−k+1)−1AN−k+1,N−k ,
XN = 0, (k = 1, . . . N − 1) ,

Yk+1 = Ak+1,k(Ak,k − Yk)−1Ak,k+1 , Y1 = 0, (k = 2, . . . N)
Zk = −(Ak,k −Xk)−1Ak,k−1, (k = 2, . . . N)
Wk = −(Ak,k − Yk)−1Ak,k+1, (k = 1, . . . N − 1) , (95)

that are used to compute the diagonal and off-diagonal blocks of g

gk,k = (Ak,k −Xk − Yk)−1 ,

gi,j = Zi gi−1,j for i > j ,

gi,j = Wi gi+1,j for i < j . (96)

It can be proved that the numerical effort to evaluate the corner blocks scales
as O(Nm3). The details, particularly the tests of efficiency can be found in [42].
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Abstract. A recently developed ab initio approach to the electronic structure of sub-
stitutionally disordered alloys and their surfaces is reviewed. It is based on (i) the
tight-binding linear muffin-tin orbital (TB-LMTO) method in the atomic sphere appro-
ximation which provides a physically transparent solution of the one-electron problem
in metallic materials, (ii) the coherent potential approximation (CPA) for a mean-
field treatment of the substitutional randomness, and (iii) the surface Green functions
for a proper description of the true semi-infinite geometry of surfaces and interfa-
ces. Theoretical formulation of fundamental electronic quantities, both site-diagonal
(charge densities, densities of states) and site non-diagonal (the Bloch spectral fun-
ctions) is presented. Transformation properties of the LMTO-CPA theory as well as
specific problems of application of the local density approximation to random alloys
are briefly discussed and basic algorithms employed in the numerical implementation
of the formalism are described.

1 Introduction

Recent ab initio investigations of electronic properties of solids rely on the local
spin-density approximation (LSDA) to the density-functional formalism and on a
number of techniques solving the corresponding one-electron Schrödinger (Kohn-
Sham) eigenvalue problem. These techniques comprise, e.g., the Korringa-Kohn-
Rostoker (KKR) method [1,2], the linear muffin-tin orbital (LMTO) method
[3,4], the linear augmented plane-wave (LAPW) method [3,5], or the optimized
linear combination of atomic orbitals (LCAO) method [6]. They provide a rea-
sonable description of the electronic structure for most of metallic solids even
within the muffin-tin model [1,2] or the atomic sphere approximation (ASA)
[3,4]. Full-potential versions of these techniques yield in principle an exact solu-
tion to the Schrödinger equation which is indispensable for accurate evaluation
of total energies, forces, and other important quantities for perfect bulk solids
(elemental metals, ordered alloys) as well as their defects (impurities, surfaces,
grain boundaries).

Substitutionally disordered alloys (substitutional solid solutions) represent
a broad class of systems where the above mentioned methods are only parti-
ally successful: their direct application requires large supercells simulating the
randomness of real alloys. The coherent potential approximation (CPA) – in-
troduced three decades ago [7] in terms of the Green functions – offered an
H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 349−378, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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effective-medium (mean-field) approach to the electronic structure of random
alloys. Further development of the CPA was formulated first in a tight-binding
picture (TB-CPA) [8,9] followed by the KKR-CPA theory [10,11] (for a review
of both approaches see, e.g., [2]). In the early 1980’s, the KKR-CPA became a
theory of random alloys fully comparable to the existing charge selfconsistent
techniques for non-random systems. The development of the TB-CPA continued
towards an ab initio level which was motivated by a need for a physically simple
description of the electronic structure of bulk alloys and their surfaces. This ef-
fort led to the LCAO-CPA [12,13] and the LMTO-CPA [14,15] methods which
can be considered as alternatives to the KKR-CPA.

In this contribution a brief theoretical background of the LMTO-CPA me-
thod is given together with numerical techniques used in practice. The theory
is developed within the TB-LMTO-ASA method [16,17] which results in an ef-
ficient unified scheme for the electronic structure of random and ordered bulk
alloys, their surfaces and interfaces. Its full detailed description was presented in
[15] while the numerical algorithms were reviewed in [18]. The paper is organized
as follows. Section 2 summarizes the most important relations of the TB-LMTO-
ASA method in terms of the Green functions. Section 3 is the central part of the
paper: it introduces the concept of configurational averaging and describes the
theoretical and numerical aspects of the LMTO-CPA method. Section 4 presents
a short review of quantities and techniques for a treatment of layered systems
(surfaces and interfaces). Section 5 deals with the application of the LSDA to
random alloys. Finally, a brief survey of existing results and further extensions
of the method is given in Sect. 6.

It should be noted that the LMTO-CPA formalism bears strong similarities
with the KKR-CPA theory within the ASA, so that expressions for many quan-
tities (e.g., densities of states, electronic charge densities) are fully analogous in
both approaches. However, there are differences as well which arise from different
Hilbert spaces and Hamiltonians: the KKR theory is based on the Hamiltonian
H = −∆ + V (r) acting in the Hilbert space of functions ψ(r), where r is a
three-dimensional continuous variable, whereas the LMTO theory uses a local
basis set with a finite number of orbitals per lattice site. The Hamiltonian is
then a matrix quantity. Despite the fact that the spectra of both Hamiltonians
are in principle identical (in a limited energy interval), some quantities (e.g., the
Bloch spectral functions) become non-equivalent in the two approaches. From
the point of view of the alloy theory, both formulations have their own merits:
the Hilbert space of the KKR-CPA is explicitly non-random (independent of a
particular alloy configuration), the TB (matrix) formulation of the LMTO-CPA
offers, e.g., a simple perturbative treatment of relativistic effects (spin-orbit cou-
pling) or an inclusion of many-body effects in terms of the intraatomic Coulomb
and exchange integrals, etc.
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2 Green Functions in the Atomic Sphere Approximation

The solution of the one-electron Schrödinger equation with a potential V (r) can
be equivalently formulated in terms of the one-electron Green function G(r, r′; z)
defined (with spin variables omitted) by [1,2]

[ z + ∆r − V (r) ] G(r, r′; z) = δ(r − r′) ,
[ z + ∆r′ − V (r′) ] G(r, r′; z) = δ(r − r′) , (1)

where z denotes a complex energy. The Green function G(r, r′; z) is an analytic
function of z with the exception of poles and/or branch cuts on the real energy
axis. Within the ASA, the Green function for a closely packed solid can be
written in the form [15,19,20]

G(r + R, r′ + R′; z) = − δRR′
∑
L

ϕRL(r<, z) ϕ̃RL(r>, z)

+
∑
LL′

ϕRL(r, z)GRL,R′L′(z) ϕR′L′(r′, z) . (2)

Here R,R′ denote the lattice points (centers of the atomic spheres), L,L′ are the
angular momentum indices (L = (�,m)), the variables r, r′ refer to positions of
points inside the individual atomic spheres, and the symbol r< (r>) denotes that
of the vectors r, r′ with the smaller (larger) modulus. The functions ϕRL(r, z)
and ϕ̃RL(r, z) are defined by

ϕRL(r, z) = ϕR�(r, z)YL(r̂) , ϕ̃RL(r, z) = ϕ̃R�(r, z)YL(r̂) , (3)

where r = |r|, r̂ = r/r, and YL(r̂) denotes the real spherical harmonics. The
radial amplitudes ϕR�(r, z) and ϕ̃R�(r, z) are respectively regular and irregular
solutions of the radial Schrödinger equation for the R-th atomic sphere of radius
sR and for the complex energy z. The regular solution is normalized to unity,∫ sR

0
ϕ2

R�(r, z) r
2 dr = 1 , (4)

while the irregular solution is unambiguously specified by a smooth matching at
the sphere boundary (r = sR) to the energy derivative of the regular solution
ϕ̇R�(r, z) (an overdot means energy derivative).

The Green function matrix GRL,R′L′(z) in (2) will be referred to as the
physical Green function. It is given in terms of the potential functions P 0

R�(z)
and the canonical structure constants S0

RL,R′L′ by

GRL,R′L′(z) = λ0
R�(z) δRL,R′L′ + µ0

R�(z) g
0
RL,R′L′(z) µ0

R′�′(z) , (5)

where the quantities on the r.h.s. are defined as

µ0
R�(z) =

√
Ṗ 0

R�(z) , λ0
R�(z) = − 1

2
P̈ 0

R�(z)
Ṗ 0

R�(z)
,

g0
RL,R′L′(z) =

{[
P 0(z) − S0]−1

}
RL,R′L′

. (6)
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In the last equation, the symbol P 0(z) stands for a diagonal matrix of potential
functions, P 0

RL,R′L′(z) = P 0
R�(z) δRL,R′L′ . The matrix g0

RL,R′L′(z) will be refer-
red to as the auxiliary (or KKR-ASA) Green function. The superscript 0 of all
quantities in (5, 6) denotes the canonical LMTO representation. The physical
and auxiliary Green functions are connected by a trivial relation (5), the former
one is directly related to the Green function in real space (2), the latter one is
of a simpler form and thus better suited for numerical applications.

Let us now summarize the most important relations involved in the TB-
LMTO theory [16,17]. The superscript α marks the corresponding representation
specified by the screening constants αR� (the trivial choice αR� = 0 corresponds
to the canonical representation). The transformations of the screened potential
functions Pα

R�(z) and the screened structure constants S
α
RL,R′L′ from a particular

representation α to some other representation β (specified by a different set of
the screening constants βR�) are given by

P β
R�(z) = Pα

R�(z) [ 1 + (αR� − βR�) Pα
R�(z) ]

−1
,

Sβ
RL,R′L′ =

{
Sα [ 1 + (α− β) Sα ]−1

}
RL,R′L′

. (7)

These relations serve simultaneously as definitions of the screened quantities
from the canonical ones

(
P 0(z), S0

)
. The second equation is written in a matrix

notation with α, β being diagonal matrices of the form αRL,R′L′ = αR� δRL,R′L′ .
In analogy to (6), we define

µα
R�(z) =

√
Ṗα

R�(z) , λα
R�(z) = − 1

2
P̈α

R�(z)
Ṗα

R�(z)
,

gα
RL,R′L′(z) =

{
[Pα(z) − Sα]−1

}
RL,R′L′

. (8)

As a consequence, one can prove two important relations, namely

GRL,R′L′(z) = λα
R�(z) δRL,R′L′ + µα

R�(z) g
α
RL,R′L′(z) µα

R′�′(z) , (9)

and

gβ
RL,R′L′(z) = (βR� − αR�)

Pα
R�(z)

P β
R�(z)

δRL,R′L′

+
Pα

R�(z)

P β
R�(z)

gα
RL,R′L′(z)

Pα
R′�′(z)

P β
R′�′(z)

. (10)

The first relation (9) implies that the physical Green function is invariant with
respect to the choice of the screening constants αR�, cf. (5). The second relation
(10) means that the auxiliary Green functions in different representations are
related to each other by a simple rescaling. Let us note that the first term on the
r.h.s. of (9) does not contribute to calculated physical quantities in most cases.
However, its presence is inevitable for correct analytic properties of the Green
functions (2, 9) in the complex energy plane.
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The only non-trivial step in a calculation of the Green function for a solid is
the matrix inversion (8) defining the auxiliary Green function gα

RL,R′L′(z). In the
case of a bulk solid with three-dimensional translational symmetry, the lattice
points R can be expressed in the form R = B + T where B runs over a finite
number of the basis vectors while T runs over the translation lattice vectors.
The lattice Fourier transformation of the structure constant matrix leads to a
k-dependent matrix quantity

Sα
BL,B′L′(k) =

∑
T

Sα
BL,(B′+T )L′ exp(i k · T ) , (11)

where k denotes a vector from the first Brillouin zone (BZ). The lattice Fourier
transform of the auxiliary Green function, gα

BL,B′L′(k, z), is given by the inverse
of a finite-dimensional matrix:

gα
BL,B′L′(k, z) =

{
[Pα(z) − Sα(k)]−1

}
BL,B′L′

, (12)

where Pα(z) denotes a diagonal matrix of the potential functions of the inequiva-
lent atoms, Pα

BL,B′L′(z) = Pα
B�(z) δBL,B′L′ . The inverse Fourier transformation

(a BZ-integration) yields then all elements of the auxiliary Green function as

gα
BL,(B′+T )L′(z) =

1
N

∑
k

gα
BL,B′L′(k, z) exp(−i k · T ) , (13)

where N is the number of cells in a large, but finite crystal with periodic bo-
undary conditions.

Further, let us mention the link between the Green functions and the stan-
dard LMTO theory. By using parametrized forms of the potential functions
Pα

R�(z) and the related quantities λα
R�(z) and µ

α
R�(z) which are correct up to the

second order in a limited energy region, we get

Pα
R�(z) = [∆R� + (γR� − αR�) (z − CR�) ]

−1 (z − CR�) ,

µα
R�(z) = [∆R� + (γR� − αR�) (z − CR�) ]

−1 √
∆R� ,

λα
R�(z) = [∆R� + (γR� − αR�) (z − CR�) ]

−1 (γR� − αR�) , (14)

where CR�, ∆R� and γR� are the LMTO-ASA potential parameters [4,17]. The
insertion of (14) with αR� = 0 into (5, 6) yields (in a matrix notation):

G(z) = (z −H)−1 , H = C +
√
∆ S0 (

1 − γ S0)−1 √
∆ , (15)

which means that the physical Green function is the resolvent of the second-order
LMTO-ASA Hamiltonian H. It should be noted that the energy linearization
of the LMTO method, which leads to (14) and to the Hamiltonian (15), is not
of central importance for the Green function techniques discussed here, as they
require matrix inversions rather than matrix diagonalizations.

Finally, let us sketch briefly the evaluation of basic physical observables. As
a rule, they are directly related to a limit of the one-electron Green function
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G(r, r′; z) with respect to the upper complex halfplane, z = E + i0, where E
denotes a real energy variable. At zero temperature, the electronic charge density
�R(r) inside the R-th atomic sphere (with spin index ignored) can be written
as

�R(r) = − 1
π

∫ EF

−∞
Im G(r + R, r + R;E + i0) dE

=
∑
LL′

∫ EF

−∞
ϕRL(r, E) nR,LL′(E) ϕRL′(r, E) dE , (16)

where EF is the Fermi energy. The quantity nR,LL′(E) is the local density of
states matrix which is given in terms of the site-diagonal block of the physical
Green function

nR,LL′(E) = − 1
π

Im GRL,RL′(E + i0) (17)

and which is closely related to RL-projected and local densities of states

nRL(E) = nR,LL(E) , nR(E) =
∑
L

nRL(E) . (18)

The total integrated density of states, N(E), can be obtained from (8, 9, 17,
18). In a matrix notation, the result can be written as [21]

N(E) =
∑
RL

∫ E

−∞
nRL(ε) dε

=
1
π

Im
[
Tr log gα(E + i0) +

∑
RL

log µα
R�(E + i0)

]
, (19)

where the symbol Tr means the trace over the composed RL-index. Note that it
is the auxiliary (KKR-ASA) Green function which appears in the expression for
the integrated density of states N(E), in contrast to the physical Green functions
entering the densities of states nR(E) and the charge densities �R(r). Despite
this fact, N(E) (19) is representation-invariant as can be easily shown.

3 The Coherent Potential Approximation

Let us now consider the simplest model of a substitutionally disordered al-
loy. We assume several components (atomic species) labeled by a superscript
Q (Q = A,B, . . . ) which occupy randomly the sites R of a given rigid lattice
with probabilities cQR satisfying the conditions∑

Q

cQR = 1 . (20)
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We neglect completely any correlations of occupations of different sites and as-
sume that the one-electron potential inside the R-th atomic sphere (and conse-
quently the related quantities like the potential functions Pα

R�(z)) depends solely
on the occupation of this site. In order to express this model in a formal way, we
introduce the random occupation index ηQ

R which takes on two values: ηQ
R = 1

if an atom of the species Q is at the site R, and ηQ
R = 0 otherwise. Each con-

figuration of the disordered alloy is thus uniquely specified by these occupation
indices which obey the following trivial relations:∑

Q

ηQ
R = 1 , ηQ

R ηQ′
R = ηQ

R δQQ′
, (21)

which reflect the fact that a given site R cannot be empty or occupied by two
different species simultaneously. Let us denote the configurational average of an
arbitrary quantity as 〈. . . 〉, then we get〈

ηQ
R

〉
= cQR ,

〈
ηQ

R ηQ′
R′

〉
= cQR δRR′ δQQ′

+ cQR cQ
′

R′ (1 − δRR′) , (22)

where the second equation expresses the absence of correlations of the site occu-
pations. The random potential functions Pα

R�(z) can be then written in a form

Pα
R�(z) =

∑
Q

ηQ
R Pα,Q

R� (z) , (23)

where Pα,Q
R� (z) denotes the non-random potential function of the atom Q occupy-

ing the site R. Equation (23) represents an important assumption of the model;
analogous relations are valid between the random quantities λα

R�(z), µ
α
R�(z) (8)

and their Q-dependent non-random counterparts λα,Q
R� (z), µα,Q

R� (z). Let us fur-
ther assume that the screening constants αR� are non-random (configuration-
independent). This implies that the structure constant matrix Sα

RL,R′L′ is non-
random. The basic problem is an (approximate) configurational averaging of the
various one-electron quantities introduced in Sect. 2. In the following, we use a
simplified notation with omitted angular momentum indices L,L′ so that ma-
trix quantities XRL,R′L′ will be abbreviated as XR,R′ (e.g., X = Sα, gα(z)),
while local (site-diagonal) quantities WR,LL′ will be abbreviated by WR (e.g.,
W = Pα(z), λα(z), µα(z)).

We start with the auxiliary Green function gα
R,R′(z). Its configurational aver-

age ḡα
R,R′(z) can be formally written in a form (cf. (8))

〈
gα

R,R′(z)
〉

= ḡα
R,R′(z) =

{
[Pα(z) − Sα]−1

}
R,R′

(24)

which is nothing but an implicit definition of a non-random matrix quantity
Pα

R,R′(z) – the so-called coherent potential function. The complete knowledge of
the latter is equivalent to an exact configurational averaging in (24). Approxi-
mate alloy theories like the virtual crystal approximation, the average t-matrix
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approximation, and the single-site CPA are based on the neglect of all site non-
diagonal blocks of Pα

R,R′(z):

Pα
R,R′(z) = Pα

R(z) δRR′ . (25)

This assumption leads to a natural interpretation of the coherent potential fun-
ctions: Pα

R,LL′(z) describes the scattering properties of an effective atom at the
lattice site R. The average Green function (24) corresponds then to a non-
random solid formed by the effective atoms placed at the rigid lattice sites.

There are several ways of introducing the single-site CPA [2,7,8]. Here we
present the approach of [14,15]. The unknown coherent potential functions Pα

R(z)
are determined in the following manner. Besides the solid with the effective
atoms at all lattice sites, we consider a case with a particular site R occupied
by a specified component Q while all other sites are occupied by the effective
atoms. The auxiliary Green function in the former case is ḡα(z) (24), whereas
that in the latter case will be denoted by ḡα,(RQ)(z). Since the two systems differ
only by a perturbation Pα,Q

R (z) − Pα
R(z) which is localized on a single site, the

two Green functions are related by

ḡ
α,(RQ)
R′,R′′ (z) = ḡα

R′,R′′(z) − ḡα
R′,R(z) tα,Q

R (z) ḡα
R,R′′(z) . (26)

The quantity tα,Q
R,LL′(z) is the single-site t-matrix describing the scattering due

to a Q-impurity in an effective medium formed by the effective atoms. It is
explicitly given by

tα,Q
R (z) = fα,Q

R (z)
[
Pα,Q

R (z) − Pα
R(z)

]
=

[
Pα,Q

R (z) − Pα
R(z)

]
f̃α,Q

R (z) , (27)

where

fα,Q
R (z) =

{
1 +

[
Pα,Q

R (z) − Pα
R(z)

]
ḡα

R,R(z)
}−1

,

f̃α,Q
R (z) =

{
1 + ḡα

R,R(z)
[
Pα,Q

R (z) − Pα
R(z)

]}−1
. (28)

The CPA condition for the coherent potential functions can be now formulated
as ∑

Q

cQR ḡ
α,(RQ)
R′,R′′ (z) = ḡα

R′,R′′(z) , (29)

which expresses the equivalence of the average Green function ḡα(z) and a
concentration-weighted sum of the Green functions ḡα,(RQ)(z), see Fig. 1.

As it is obvious from (26), the relation (29) is equivalent to∑
Q

cQR tα,Q
R (z) = 0 , (30)
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Fig. 1. The selfconsistency condition of the CPA

which is a condition for vanishing average scattering from the Q-impurities (Q =
A,B, . . . ) embedded in the effective medium.

Equation (30) represents the standard form of the CPA selfconsistency con-
dition [2,7,8] which specifies implicitly the coherent potential functions Pα

R(z).
It should be noted that Pα

R,LL′(z) are in general non-diagonal matrices in the
L,L′ indices, in contrast to the potential functions of the individual components
(Pα,Q

R,LL′(z) = Pα,Q
R� (z) δLL′). The CPA condition (30) has to be solved for all si-

tes simultaneously as the single-site t-matrices (27, 28) involve the site-diagonal
blocks of the full matrix inversion defining the average Green function (24). In
practice, this can be done only if the whole lattice can be represented by a finite
number of inequivalent sites. In the case of a bulk alloy with a crystal lattice and
with a possible long-range order, the lattice sites can be written as R = B + T
(see the text before (11)), where B labels the inequivalent sites, and the alloy is
specified by the concentrations cQB and the component-dependent potential fun-
ctions Pα,Q

B� (z). As a consequence, the coherent potential functions for all lattice
sites reduce to a finite set of matrix quantities Pα

B,LL′(z). In analogy to (12),
the lattice Fourier transform of the average auxiliary Green function is given by

ḡα
BL,B′L′(k, z) =

{
[Pα(z) − Sα(k)]−1

}
BL,B′L′

, (31)

where the matrix Sα(k) is given by (11) and Pα(z) denotes a matrix of the cohe-
rent potential functions of the inequivalent sites, Pα

BL,B′L′(z) = Pα
B,LL′(z)δBB′ .

A subsequent BZ-integration yields the elements of the average auxiliary Green
function (cf. (13))

ḡα
BL,(B′+T )L′(z) =

1
N

∑
k

ḡα
BL,B′L′(k, z) exp(−i k · T ) . (32)

It should be noted that only the site-diagonal blocks (B = B′, T = 0) of ḡα(z)
enter the CPA selfconsistency condition (30). The appearance of k-dependent
quantities in the description of random substitutional alloys reflects a well-known
fact that the configurational averaging restores the translational symmetry (ab-
sent for individual configurations of the alloy).

Despite the fact that the CPA condition (30) represents a set of coupled non-
linear equations for the complex matrix quantities Pα

R,LL′(z), general theorems
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guarantee the existence of its unique solution which possesses the so-called Her-
glotz property. The latter means that (i) the coherent potential functions are
analytic functions of z outside the real energy axis, and (ii) the imaginary part
of the matrix Pα

R(z) is positive (negative) definite for Im z > 0 (Im z < 0).

3.1 Site-Diagonal Quantities

The calculation of average local quantities like the charge densities (16) or the
local densities of states (18) requires a knowledge of additional quantities besides
the site-diagonal blocks of the average Green function (24). One introduces so-
called conditionally averaged local auxiliary Green functions ḡα,Q

R,R(z) defined
by

ḡα,Q
R,R(z) =

(
cQR

)−1 〈
ηQ

R gα
R,R(z)

〉
. (33)

This quantity corresponds to the site-diagonal (R,R)-th block of the Green
function averaged under the condition that the site R is occupied by the atomic
species Q. Within the CPA, ḡα,Q

R,R(z) is equal to the (R,R)-th block of the
Green function ḡα,(RQ)(z) (26) corresponding to an RQ-impurity in the effective
medium:

ḡα,Q
R,R(z) = ḡα

R,R(z) − ḡα
R,R(z) tα,Q

R (z) ḡα
R,R(z) . (34)

An equivalent form of this result can be obtained with the help of (28):

ḡα,Q
R,R(z) = ḡα

R,R(z) fα,Q
R (z) = f̃α,Q

R (z) ḡα
R,R(z) . (35)

It follows immediately from (34, 35) that the CPA selfconsistency condition (30)
can be expressed in two other forms, namely,∑

Q

cQR ḡα,Q
R,R(z) = ḡα

R,R(z) , (36)

and ∑
Q

cQR fα,Q
R (z) =

∑
Q

cQR f̃α,Q
R (z) = 1 . (37)

The first of them can be easily interpreted: the concentration-weighted average
of the Q-dependent conditionally averaged local Green functions is equal to the
site-diagonal block of the average Green function.

Let us now discuss the averaging of local observables. We define the condi-
tionally averaged local physical Green functions ḠQ

R,R(z) as

ḠQ
R,R(z) =

(
cQR

)−1 〈
ηQ

R GR,R(z)
〉
. (38)
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Taking into account (9) and the simple configuration dependence of Pα
R�(z),

λα
R�(z), and µα

R�(z) (23), we obtain finally

ḠQ
RL,RL′(z) = λα,Q

R� (z) δLL′ + µα,Q
R� (z) ḡα,Q

RL,RL′(z) µα,Q
R�′ (z) . (39)

The expressions (16, 17, 18) can be modified to get the Q-resolved average
quantities: the local density of states matrix

nQ
R,LL′(E) = − 1

π
Im ḠQ

RL,RL′(E + i0) , (40)

the densities of states

nQ
RL(E) = nQ

R,LL(E) , nQ
R(E) =

∑
L

nQ
RL(E) , (41)

and the charge densities

�Q
R(r) =

∑
LL′

∫ EF

−∞
ϕQ

RL(r, E) n
Q
R,LL′(E) ϕQ

RL′(r, E) dE . (42)

One can also define average local quantities as concentration-weighted sums of
the corresponding Q-resolved quantities, e.g.,

nRL(E) =
∑
Q

cQR nQ
RL(E) , nR(E) =

∑
Q

cQR nQ
R(E) , (43)

which define average densities of states.
The CPA expression for the configuration average of the total integrated

density of states N(E) is not a simple generalization of (19). The final result is
given by [2,14,22]

N(E) =
1
π

Im
[
Tr log ḡα(E + i0) +

∑
RQ

cQR tr log fα,Q
R (E + i0)

+
∑
RQL

cQR log µα,Q
R� (E + i0)

]
, (44)

where the symbol tr means the trace over the angular momentum index L. Let
us mention an important variational property of N(E) (44), which is a direct
consequence of the CPA selfconsistency [22]: N(E) is stationary with respect
to variations of the coherent potential functions δPα

R(z). This property makes
the CPA an excellent starting point for studies of alloy energetics within the
generalized perturbation method [23,24].

In numerical implementations of the CPA as well as of other Green function
techniques, complex energies are indispensable to obtain the limiting values at
the real energy axis, cf. (40, 44). A useful approach to get the necessary limits
F (E+i0) of a complex function F (z) analytic in the upper halfplane is based on
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a relatively easy evaluation of the function F (z) for Im z > 0 and a subsequent
analytic continuation to the real axis [25]. This procedure is justified by the
Riemann-Cauchy relations and it employs truncated Taylor expansions of the
function F (z). Suppose that F (z) has to be evaluated for real energies on a
dense equidistant mesh of energy points En = E0 + nh, where h is an energy
step and n = 0, 1, . . . , N . Let us consider a discrete set of complex energy points

zn,m = E0 + n h + im h , (45)

where m = 0, 1, . . . ,M , and let us abbreviate Fn,m = F (zn,m). The first step
of a continuation procedure is the calculation of Fn,M for −M ≤ n ≤ N +M ,
i.e., for complex energies along a line parallel to the real axis. In each of the M
following steps, the values of Fn,m with m reduced by one are obtained from all
previously calculated values. The simplest examples are given by relations:

Fn,m−1 = 2 Fn,m +
−1 + i

2
Fn−1,m +

−1 − i
2

Fn+1,m , (46)

which is based on a quadratic Taylor expansion, and

Fn,m−1 = Fn,m +
i
2
Fn−1,m − i

2
Fn+1,m , (47)

which is based on a repeated linear Taylor expansion. There are many modifica-
tions of this procedure which employ higher-order expansions [15,25]. However,
only the linear continuation (47) yields always strictly non-negative densities
of states and the Bloch spectral functions. Typically, an energy increment of
h ∼ 5 mRy and M ∼ 2 to 5 lead to a sufficiently large Im z for an initial calcu-
lation of F (z). The continuation to the real axis according to (46, 47) represents
then a negligible computational effort.

An example of average densities of states is presented in Fig. 2 for a spin-
polarized random bcc Fe0.7V0.3 alloy. Due to the antiparallel magnetic moments
of the Fe and V atoms, the spin-up electrons feel a much stronger disorder than
the spin-down electrons. The different degree of disorder is nicely reflected in the
shapes of the local densities of states: the spin-down densities for both compo-
nents (Fig. 2b) resemble those for the pure elements in the bcc structure whereas
the spin-up densities (Fig. 2a) are strongly modified due to alloying. Especially
in the latter case, the CPA describes the electronic structure substantially bet-
ter than other single-site theories (the virtual crystal approximation, the average
t-matrix approximation).

3.2 Site Non-Diagonal Quantities

Let us now turn to the physical Green function GR,R′(z) and to its configura-
tional average

〈GR,R′(z)〉 = ḠR,R′(z) , (48)



Disordered Alloys 361

Fig. 2. Spin-polarized local densities of states for Fe (full lines) and V (dotted lines)
atoms in the random bcc Fe0.7V0.3 alloy: (a) spin-up electrons, (b) spin-down electrons.
The vertical lines denote the position of the Fermi energy

and let us treat separately its site-diagonal (R = R′) and site non-diagonal
(R 
= R′) blocks. The former are given directly by

ḠR,R(z) =
∑
Q

cQR ḠQ
R,R(z) , (49)

where the conditionally averaged blocks ḠQ
R,R(z) can be expressed according to

(39). The site non-diagonal blocks can be rewritten with the help of (9, 23) as

ḠR,R′(z) =
∑
QQ′

µα,Q
R (z)

〈
ηQ

R gα
R,R′(z) ηQ′

R′

〉
µα,Q′

R′ (z) . (50)

The configurational average on the r.h.s. of (50) represents (apart from a nor-
malization) a more complicated case of a conditional average: it refers to the site
non-diagonal (R,R′)-th block of the auxiliary Green function averaged under
the condition that the two sites R,R′ are occupied by the atomic species Q,Q′,
respectively. The single-site CPA expression for this kind of conditional average
is [10,11] 〈

ηQ
R gα

R,R′(z) ηQ′
R′

〉
= cQR f̃α,Q

R (z) ḡα
R,R′(z) cQ

′
R′ f

α,Q′
R′ (z) . (51)

Equation (51) can be derived for binary alloys by means of a simple algebraic
technique [14] while for the multicomponent case one can use Green functions
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in an extended space [2,9]:

ĝα
RQL,R′Q′L′(z) = ηQ

R gα
RL,R′L′(z) ηQ′

R′ . (52)

A single-site CPA averaging of (52) yields then the result (51) [2]. The final
expression for the average physical Green function follows from (49, 50, 51) and
can be compactly written as

ḠR,R′(z) = ḠR,R(z) δRR′ + M̃α
R(z) ḡα

R,R′(z) Mα
R′(z) (1 − δRR′)

= Lα
R(z) δRR′ + M̃α

R(z) ḡα
R,R′(z) Mα

R′(z) , (53)

where

Mα
R(z) =

∑
Q

cQR fα,Q
R (z) µα,Q

R (z) ,

M̃α
R(z) =

∑
Q

cQR µα,Q
R (z) f̃α,Q

R (z) , (54)

and

Lα
R(z) = ḠR,R(z) − M̃α

R(z) ḡα
R,R(z) Mα

R(z) . (55)

It should be noted that the final relation between ḠR,R′(z) and ḡα
R,R′(z) (53)

bears the same formal structure as (9) for the non-averaged Green functions.
The average physical Green function (53) can be now used to calculate the

Bloch spectral functions. Let us consider again the case of a random bulk alloy
with a crystal lattice and with a possible long-range order. The lattice sites can
be written as R = B+T , where B labels the inequivalent sites and T runs over
the translation vectors of the configurationally averaged system (see the text
near (31, 32)). The Bloch spectral functions are defined in terms of the lattice
Fourier transform of ḠR,R′(z):

ABL(k, E) = − 1
π

Im ḠBL,BL(k, E + i0) ,

AB(k, E) =
∑
L

ABL(k, E) . (56)

As follows from (53), the lattice Fourier transform of ḠR,R′(z) can be reduced
to that of ḡα

R,R′(z) which in turn is given by (31):

ḠBL,BL(k, z) =
∑
L′L′′

M̃α
B,LL′(z) ḡα

BL′,BL′′(k, z) Mα
B,L′′L(z)

+ Lα
B,LL(z) . (57)

Using (53) and elementary properties of lattice Fourier transformations, one
can prove a relation between the Bloch spectral function ABL(k, E) and the
corresponding average density of states nBL(E) (43), namely,

nBL(E) =
1
N

∑
k

ABL(k, E) . (58)
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According to this sum rule, the Bloch spectral function reflects the contributions
of different parts of the BZ to the resulting density of states of the configura-
tionally averaged system. Let us note that in the case of non-random crystalline
solids, the spectral functions for a given fixed k-vector reduce to sums of δ-
functions located at the corresponding energy eigenvalues. Hence, the concept
of the Bloch spectral functions substitutes energy bands in random alloys and
can be used, e.g., for a definition of the Fermi surfaces. The latter are based on
the k-dependence of the spectral functions (56) evaluated at a constant energy
(E = EF ).

3.3 Transformation Properties of the LMTO-CPA

The physical properties of a non-random system described by the TB-LMTO-
ASA method do not depend on the choice of a particular LMTO representation
α as expressed by (5, 9). In the context of random alloys, it is of fundamental
importance to know whether this feature survives the approximate configuration
averaging within the single-site CPA. The answer is positive [15] as will be shown
below.

We assume that the representations α, β are specified by non-random scre-
ening constants αR�, βR�, respectively. For simplicity, we will omit the energy
arguments as well as the angular momentum indices L,L′. The transformation
of the coherent potential functions is analogous to (7), namely,

Pβ
R = Pα

R [ 1 + (αR − βR) Pα
R ]−1

. (59)

The transformations of the coherent potential functions (59) and of the non-
random structure constants (7) lead to the following transformation of the aver-
age auxiliary Green functions:

ḡβ
R,R′ = (βR − αR) Pα

R

(
Pβ

R

)−1
δRR′

+
(
Pβ

R

)−1
Pα

R ḡα
R,R′ Pα

R′

(
Pβ

R′

)−1
(60)

which is of the same structure as (10). The transformation of the perturbation
related to a single Q-impurity embedded in the effective medium is given by

P β,Q
R − Pβ

R = P β,Q
R

(
Pα,Q

R

)−1 (
Pα,Q

R − Pα
R

)
(Pα

R)−1 Pβ
R , (61)

as can be easily derived from (7, 59). The transformation of the quantities (28)
can be obtained with the help of (61) and of the site-diagonal blocks of (60).
The result is

fβ,Q
R = Pβ

R (Pα
R)−1

fα,Q
R Pα,Q

R

(
P β,Q

R

)−1
,

f̃β,Q
R =

(
P β,Q

R

)−1
Pα,Q

R f̃α,Q
R (Pα

R)−1 Pβ
R , (62)
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which can be combined with (61) to get the transformation of the single-site
t-matrices (27):

tβ,Q
R = Pβ

R (Pα
R)−1

tα,Q
R (Pα

R)−1 Pβ
R . (63)

An immediate consequence of (63) is the simultaneous validity of the CPA
selfconsistency condition (30) in two different LMTO representations. This me-
ans that all CPA effective media are mutually equivalent irrespective of the
particular LMTO representation used for the formulation and solution of the
selfconsistency condition.

The transformations of other quantities can be derived from (59–63). This
yields, e.g., for the conditionally averaged local auxiliary Green functions (35) a
relation completely analogous to (10):

ḡβ,Q
RL,RL′(z) = (βR� − αR�)

Pα,Q
R� (z)

P β,Q
R� (z)

δLL′

+
Pα,Q

R� (z)

P β,Q
R� (z)

ḡα,Q
RL,RL′(z)

Pα,Q
R�′ (z)

P β,Q
R�′ (z)

. (64)

One can further show that CPA averages of the physical Green functions (38, 48)
remain invariant with respect to different LMTO representations α, which in turn
implies the invariance of all physical observables and proves a full compatibility
of the single-site CPA with the TB-LMTO method.

3.4 Solution of the CPA Selfconsistency

It should be noted that although the above three forms of the CPA condition (30,
36, 37) are mathematically equivalent, not all of them are suitable for numerical
applications. For this purpose we will introduce the so-called coherent interactor
Ωα

R,LL′(z) [2,9,14] which is a local quantity defined implicitly in terms of the
coherent potential function and the site-diagonal block of the average auxiliary
Green function as

ḡα
R,R(z) = [ Pα

R(z) − Ωα
R(z) ]−1

, (65)

or, explicitly, as

Ωα
R(z) = Pα

R(z) −
[
ḡα

R,R(z)
]−1

. (66)

The coherent interactor describes the effective coupling of a given site R to all
other sites in the system. Using this definition, one can express the conditionally
averaged local auxiliary Green function as

ḡα,Q
R,R(z) =

[
Pα,Q

R (z) − Ωα
R(z)

]−1
. (67)

In the following, we describe a simple iterative scheme solving the CPA condition
(36) using the coherent interactor and (65, 67). We assume that the energy z lies
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outside the real energy axis. For brevity, the energy argument z and the orbital
indices L,L′ will be omitted.

The algorithm starts from an input value Ωα,(0)
R which can be set either to

zero or, e.g., to the converged coherent interactor for a neighboring energy argu-
ment. For a particular iteration leading from Ω

α,(n)
R to the new value Ωα,(n+1)

R ,
the procedure consists of three steps. First, the coherent potential function Pα,(n)

R

at each site R is set up in terms of Ωα,(n)
R and the potential functions Pα,Q

R and
concentrations cQR of all components Q according to the relation[

Pα,(n)
R − Ω

α,(n)
R

]−1
=

∑
Q

cQR

[
Pα,Q

R − Ω
α,(n)
R

]−1
, (68)

or, explicitly,

Pα,(n)
R =

{ ∑
Q

cQR

[
Pα,Q

R − Ω
α,(n)
R

]−1
}−1

+ Ω
α,(n)
R . (69)

Second, these coherent potential functions are used to calculate the site-diagonal
blocks ḡα,(n)

R,R of the average auxiliary Green function

ḡ
α,(n)
R,R =

{ [
Pα,(n) − Sα

]−1 }
R,R

. (70)

Third, the new value of the coherent interactor Ωα,(n+1)
R at each site R is obtai-

ned from the relation[
Pα,(n)

R − Ω
α,(n+1)
R

]−1
= ḡ

α,(n)
R,R , (71)

or, explicitly,

Ω
α,(n+1)
R = Pα,(n)

R −
[
ḡ

α,(n)
R,R

]−1
. (72)

These three steps have to be repeated in order to obtain converged quantities
Ωα

R and Pα
R at all sites. Steps (69, 70, 72) preserve the Herglotz property of the

matrix quantities Ωα
R, Pα

R, ḡα
R,R. Convergence is achieved typically after 5 to 20

iterations depending on the alloy system and the complex energy variable.
Substantial acceleration of charge selfconsistent calculations for random sy-

stems can be achieved by repeated alternation of one CPA iteration and one up-
date of one-electron potentials (see Sect. 5). In such case, the potential functions
of all alloy components in (68, 69) are replaced by the n-dependent quantities
P

α,Q,(n)
R . The update of the one-electron potentials and the potential functions

follows the CPA iteration (69, 70, 72) and is based on charge densities derived
from the conditionally averaged local auxiliary Green functions

ḡα,Q
R,R =

[
P

α,Q,(n)
R − Ω

α,(n+1)
R

]−1
. (73)

In this way, the CPA selfconsistency is obtained simultaneously with the LSDA
selfconsistency.
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4 Surfaces and Interfaces

Applications of the single-site CPA to layered systems on lattices with two-
dimensional (2D) translational symmetry require special approaches to calculate
the Green function quantities involved. Below we summarize the most essential
relations of a technique based on the concept of principal layers and the surface
Green functions [26–28].

The approach rests on the use of the tight-binding LMTO representation
β which provides the most localized structure constants Sβ

RL,R′L′ [16,17], and
on the representation invariance of the CPA (Sect. 3.3). The finite range of the
tight-binding structure constants allows to introduce the principal layers in such
a way that (i) each principal layer consists of a finite number of neighboring
atomic layers, (ii) the whole lattice can be considered as a stacking of an infinite
sequence of the principal layers labeled by an integer index p, see Fig. 3, and (iii)
the structure constants Sβ

RL,R′L′ couple only the neighboring principal layers.
The sites R of a given system can be then written in a form R ≡ (p,B,T ‖),
where p is the index of the principal layer, B denotes the corresponding basis
vector (mostly an atomic layer) in the p-th principal layer, and T ‖ is a 2D
translation vector such that R = B + T ‖. We assume for simplicity that each
principal layer contains the same number nB of the basis vectors B.
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Fig. 3. Principal layers for a single interface of two semi-infinite systems

As a consequence of the 2D translational symmetry of the lattice, a 2D lattice
Fourier transformation of the structure constant matrix leads to a k‖-dependent
matrix

Sβ
pBL,p′B′L′(k‖) =

∑
T ‖

Sβ
pBL,p′(B′+T ‖)L′ exp(i k‖ · T ‖) , (74)

where k‖ denotes a vector in the 2D BZ. It should be noted that the tight-
binding structure constants (74) vanish for |p − p′| > 1, i.e., they form a block
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tridiagonal matrix with respect to the principal-layer index. In the following, we
will often omit the composed matrix index BL so that matrix quantities with
elements XpBL,p′B′L′ and Wp,BL,B′L′ will be respectively abbreviated as Xp,p′

and Wp. The dimension of the latter matrices is equal to nB(�max + 1)2, where
�max denotes the angular-momentum cutoff.

Let us consider the case of a single interface of two semi-infinite systems. Ex-
amples of this situation are: a surface of a bulk alloy (solid-vacuum interface), an
epitaxial interface of two alloys (metals), a special grain boundary in a bulk me-
tal, etc. The treatment of all these cases can be greatly simplified due to the fact
that all inhomogeneities are confined to an intermediate region of a finite thickn-
ess (principal layers 1 ≤ p ≤ M) placed between two semi-infinite substrates, see
Fig. 3. The electronic properties (e.g., the coherent potential functions) of both
unperturbed substrates are supposed to be known and the main interest then
concentrates on the intermediate region. Let us assume that the configuration-
independent properties of the layered alloy system exhibit the 2D translational
symmetry of the underlying lattice. As a consequence, the coherent potential
functions for all lattice sites reduce to pB-resolved quantities Pβ

pB,LL′(z) which
form matrices Pβ

p (z) with elements Pβ
p,BL,B′L′(z) = Pβ

pB,LL′(z) δBB′ . The aver-
age auxiliary Green function (24) can be then calculated using the corresponding
lattice Fourier transform ḡβ

pBL,p′B′L′(k‖, z).
The layer-diagonal (p = p′) blocks of the latter can be expressed as

ḡβ
p,p(k‖, z) =

[
Pβ

p (z) − Sβ
p,p(k‖)

− Γ β,<
p (k‖, z) − Γ β,>

p (k‖, z)
]−1

, (75)

where the the first two terms in the bracket correspond to the isolated p-th layer
while the so-called embedding potentials Γ β,<

p (k‖, z) and Γ β,>
p (k‖, z) reflect the

influence of the two semi-infinite parts adjacent to the p-th principal layer –
the superscript < (>) refers to the part consisting of all principal layers p′ < p
(p′ > p). The embedding potentials for layers inside the intermediate region
(1 ≤ p ≤ M) can be calculated from recursion relations

Γ β,<
p (k‖, z) = Sβ

p,p−1(k‖)
[

Pβ
p−1(z) − Sβ

p−1,p−1(k‖)

− Γ β,<
p−1(k‖, z)

]−1
Sβ

p−1,p(k‖) ,

Γ β,>
p (k‖, z) = Sβ

p,p+1(k‖)
[

Pβ
p+1(z) − Sβ

p+1,p+1(k‖)

− Γ β,>
p+1(k‖, z)

]−1
Sβ

p+1,p(k‖) , (76)

and from the starting values

Γ β,<
1 (k‖, z) = Sβ

1,0(k‖) Gβ
left(k‖, z) S

β
0,1(k‖) ,

Γ β,>
M (k‖, z) = Sβ

M,M+1(k‖) Gβ
right(k‖, z) S

β
M+1,M (k‖) . (77)
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The matrix quantities Gβ
left(k‖, z) and Gβ

right(k‖, z) in (77) are the surface Green
functions of the two semi-infinite substrates sandwiching the intermediate region.
The calculation of the layer-diagonal blocks of the Green function according to
(75, 76) is obviously an order-M procedure.

The surface Green function (SGF) is defined as a projection of the full Green
function of a semi-infinite layered system onto its outer principal layer. For a
semi-infinite system consisting of identical principal layers, one can apply the
concept of removal invariance [2] to derive a closed condition for the SGF which
reflects the true semi-infinite geometry of the system. In the case of the left
substrate in Fig. 3, this condition is

Gβ
left(k‖, z) =

[
Pβ

0 (z) − Sβ
0,0(k‖)

− Sβ
0,−1(k‖) Gβ

left(k‖, z) S
β
−1,0(k‖)

]−1
, (78)

whereas an analogous condition for the right substrate is omitted here for brevity.
Both conditions are of the same form, namely

G = (D − A GB)−1 , (79)

where G is the SGF and where the k‖- and z-arguments were suppressed. The
most direct method to solve (79) is based on simple iterations [28]

G(n+1) = (D − A G(n)B)−1 (80)

starting from an input value G(0) which can be set either to zero or, e.g., to
the converged SGF for a neighboring energy argument. The latter choice of
G(0) substantially reduces the number of necessary iteration steps, especially for
complex energies close to the real axis. The iterative procedure (80) is easy to
implement, leads always to the correct solution of (79) satisfying the Herglotz
property, and has a direct physical meaning: G(n) with the initial value G(0) = 0
corresponds to the SGF of a stacking of n identical principal layers. The number
of steps to get a converged SGF depends on the imaginary part of the complex
energy z, but in most applications several tens of iterations are sufficient. In
the cases where an enhanced accuracy of the SGF and/or very small Im z (less
than 10 mRy) are needed, the SGF can be more efficiently obtained by means of
the renormalization-decimation technique [15,18,29]. The high efficiency of the
latter method is due to an exponential increase of the thickness of an effective
layer with the number of iterations, in contrast to the linear increase inherent
to the simple procedure (80).

For evaluation of local physical observables as well as for the solution of the
CPA condition, the site-diagonal blocks of the average auxiliary Green function
are of central importance (see Sect. 3). They can be obtained by a 2D BZ-
integration of (75) as

ḡβ
pBL,pBL′(z) =

1
N‖

∑
k‖

ḡβ
pBL,pBL′(k‖, z) , (81)
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where N‖ is the number of k‖-points sampling the 2D BZ. The layer-diagonal k‖-
dependent average auxiliary Green functions (75) enter also the corresponding
Bloch spectral functions (k‖-resolved densities of states). They are defined in
analogy to (56) as

ApBL(k‖, E) = − 1
π

Im ḠpBL,pBL(k‖, E + i0) , (82)

where the lattice Fourier transform of the average physical Green function is
given by (cf. (57))

ḠpBL,pBL(k‖, z) =
∑
L′L′′

M̃β
pB,LL′(z) ḡβ

pBL′,pBL′′(k‖, z) Mβ
pB,L′′L(z)

+ Lβ
pB,LL(z) . (83)

It should be noted that the Bloch spectral functions (82) represent a suitable
tool to study surface/interface states in disordered as well as ordered layered
systems.

Figure 4 shows the local densities of states at the (001) surface of a random
non-magnetic bcc Fe0.15V0.85 alloy. One can clearly see a rapid convergence of
the layer-resolved densities to their bulk counterparts, which justifies numerically
the concept of the intermediate region of a finite thickness. The bands in the
top surface layer are narrower than the bulk ones and the pronounced minima
in the middle of the bcc bulk bands are absent in the top surface layer. These
effects can be ascribed to the reduced coordination of the surface atoms. As
a consequence, both components exhibit a strong enhancement of the surface
densities of states at the Fermi energy (see Fig. 4) which in turn can induce a
surface magnetic instability of the non-magnetic bulk alloy.

5 Charge Selfconsistency for Random Alloys

The LSDA selfconsistency for substitutionally disordered systems within the
CPA and the ASA is based on the average component-resolved charge densities
(42). In the following formulas, we use atomic Rydberg units (e2 = 2) and
assume a spin-polarized non-relativistic system with a collinear spin structure.
The spin-dependent charge densities inside the individual atomic spheres will
be denoted �Q

Rσ(r) where σ = ↑, ↓ is the spin index. Related quantities are the
spherically averaged spin-dependent densities

�̃Q
Rσ(r) =

1
4π

∫
�Q

Rσ(r) d
2r̂ , (84)

and the total electronic charge densities

�Q
R(r) = �Q

R↑(r) + �Q
R↓(r) , �̃Q

R(r) = �̃Q
R↑(r) + �̃Q

R↓(r) . (85)
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Fig. 4. Layer-resolved local densities of
states for Fe (full lines) and V (dotted
lines) atoms at the (001) surface of the
random bcc Fe0.15V0.85 alloy. The top
four layers and the bulk layer are deno-
ted by S, S-1, S-2, S-3, and bulk, res-
pectively. The vertical line denotes the
position of the Fermi energy

The selfconsistent one-electron component-dependent ASA potentials are then
given by

V Q
Rσ(r) = − 2 ZQ

R r−1 +
∫

(R)
2 �̃Q

R(r′) |r − r′|−1 d3r′

+ Vxc,σ
(
�̃Q

R↑(r), �̃
Q
R↓(r)

)
+ VMad,Rs , (86)

where the integration is carried out over the R-th atomic sphere. The first term
in (86) is the Coulomb potential due to the point-like nuclear charge ZQ

R, the
second term is the Hartree potential due to the spherically symmetric charge
density �̃Q

R(r), the third term represents the exchange-correlation contribution,
and the last term is the Madelung contribution. The exchange-correlation term
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is evaluated according to a standard relation

Vxc,σ(�↑, �↓) =
∂

∂�σ
[ (�↑ + �↓) εxc(�↑, �↓) ] , (87)

where εxc(�↑, �↓) is the exchange-correlation energy per particle of a spin-polarized
homogeneous electron gas. The Madelung contribution VMad,Rs in (86) is a spe-
cial case (for L = (�,m) = (0, 0)) of the multipole Madelung terms defined
by

VMad,RL =
∑
R′L′

′
MRL,R′L′ q̄R′L′ , (88)

where the primed sum indicates exclusion of the term R′ = R. The constants
MRL,R′L′ in (88) describe the electrostatic interactions between two multipoles
located at the sites R,R′ and the quantities q̄RL are average multipole moments
due to the total (electronic and nuclear) charge densities inside the atomic sphe-
res,

q̄RL =
∑
Q

cQR qQ
RL ,

qQ
RL =

√
4π

2�+ 1

∫
(R)

r� YL(r̂) �
Q
R(r) d3r − ZQ

R δ�,0 . (89)

Let us note that q̄Rs and qQ
Rs (� = 0 in (89)) refer to the net charges inside

the R-th sphere. The summations in (88) for infinite lattices with two- or three-
dimensional translational symmetry can be performed using the corresponding
Ewald techniques [15,18,30]. For bulk systems the Madelung contribution (88) is
often calculated only from the net charges q̄Rs, whereas for surfaces an inclusion
of the dipole moments is inevitable, e.g., for a good description of the surface
dipole barrier and the work function [30].

For calculations of charge densities, the energy dependence of the regular
radial amplitude in (3) is replaced by a truncated Taylor expansion at an energy
EQ

ν,R�σ in the center of the occupied part of the valence band

ϕQ
R�σ(r, E) = φQ

R�σ(r) + φ̇Q
R�σ(r)

(
E − EQ

ν,R�σ

)
+

1
2
φ̈Q

R�σ(r)
(
E − EQ

ν,R�σ

)2
, (90)

which results in a simple expression for the spherically averaged charge density
(84)

�̃Q
Rσ(r) =

1
4π

∑
�

{
mQ,0

R�σ

(
φQ

R�σ(r)
)2

+ 2mQ,1
R�σ φ

Q
R�σ(r) φ̇

Q
R�σ(r)

+ mQ,2
R�σ

[(
φ̇Q

R�σ(r)
)2

+ φQ
R�σ(r) φ̈

Q
R�σ(r)

] }

+ �Q,core
Rσ (r) . (91)
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In (91) the last term denotes the core contribution while the quantities mQ,k
R�σ

(k = 0, 1, 2) represent the lowest energy moments of the QR�σ-projected valence
densities of states (41)

mQ,k
R�σ =

∫ EF

EB

(
E − EQ

ν,R�σ

)k
�∑

m=−�

nQ
RLσ(E) dE , (92)

where EB denotes the bottom of the valence band. Similarly, the multipole
moments qQ

RL (89) reduce to several radial and energy integrations [15,30]. The
latter are of the type (k, k′ = 0, 1, 2)

mQ,kk′
R,LL′,σ =

∫ EF

EB

(
E − EQ

ν,R�σ

)k
nQ

R,LL′,σ(E)
(
E − EQ

ν,R�′σ

)k′
dE (93)

representing thus the lowest energy moments of the local density of states matrix
nQ

R,LL′,σ(E) (40).
As follows from (40), the energy integrals (92, 93) over the occupied part of

the valence spectrum can be generally formulated as

− 1
π

∫ EF

EB

Im F (E + i0) dE =
1
2πi

∫
C

F (z) dz . (94)

The function F (z) is an analytic function of the complex energy variable z
(except at poles and/or branch cuts lying on the real energy axis) which satisfies
F (z∗) = F ∗(z). The r.h.s. integral in (94) is taken along a closed contour C
intersecting the real energy axis at the Fermi level and enclosing the occupied
valence band. Standard quadrature techniques lead to an approximation

1
2πi

∫
C

F (z) dz ≈ Re

[
N∑

n=1

wn F (zn)

]
, (95)

which replaces the original integral along the real axis by a finite sum with N
complex weights wn and nodes zn ∈ C. All nodes zn can be chosen in the upper
(or the lower) complex halfplane. They are usually taken along a semicircle
contour with a denser mesh near the Fermi energy. Experience shows that a
relatively modest number of nodes (N ∼ 10 to 20) is sufficient to achieve desired
accuracy in most charge selfconsistent calculations. Minor complications arise in
selfconsistent bulk calculations in which the Fermi energy EF is unknown and
changes in each iteration (contrary to the case of surfaces where the value of
EF is fixed from a previous calculation of the bulk substrate). Fortunately, it is
not necessary to locate the bulk Fermi level exactly in each iteration but merely
to update its value so that the convergence of EF proceeds simultaneously with
that of the one-electron potentials.

Iterative procedures leading to selfconsistent one-electron potentials (or charge
densities) have been recently systematically accelerated by means of quasi-Newton
methods (like the Anderson and the second Broyden mixing scheme) [31]. These
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techniques are efficient also for random alloy systems where the LSDA-CPA
selfconsistency can be achieved by alternating updates of the one-electron po-
tentials and the coherent interactors (Sect. 3.4). According to our experience, the
full convergence in all-electron calculations can be obtained in 30 to 80 iterations
for most systems.

The total energy for non-random systems within the ASA [17,20,30] can
be directly generalized to the case with substitutional randomness. The final
formula is given by a concentration-weighted sum of RQ-dependent terms

E =
∑
RQ

cQR EQ
R , (96)

where the individual contributions EQ
R are explicitly given by

EQ
R =

∑
σj

εQ,core
Rσj +

∑
Lσ

∫ EF

EB

E nQ
RLσ(E) dE

−
∑

σ

∫
(R)

�̃Q
Rσ(r) V

Q
Rσ(r) d

3r

+
∫

(R)
�̃Q

R(r)
[
εxc

(
�̃Q

R↑(r), �̃
Q
R↓(r)

)
− 2 ZQ

R r−1
]
d3r

+
∫

(R)

∫
(R)

�̃Q
R(r) �̃Q

R(r′) |r − r′|−1 d3r d3r′

+
1
2

∑
L

qQ
RL VMad,RL . (97)

The first term in (97) is the sum of core eigenvalues εQ,core
Rσj labeled by j, while

the second term represents an energy contribution due to the valence densities
of states nQ

RLσ(E) (41). It can be trivially expressed in terms of the moments
mQ,k

R�σ (92).
Let us note that the above presented formulas for the one-electron potentials

(86) and for the total-energy contributions (97) were derived under a complete
neglect of any correlations (i) between the occupation of a particular site R and
the charge densities inside the other atomic spheres, and (ii) between the charge
densities inside different atomic spheres. These neglected correlations result then
in the component-independent Madelung terms VMad,RL (88) due to the average
multipole moments q̄R′L′ (89). This simple treatment is fully compatible with
the mean-field nature of the single-site CPA.

However, it has been found in a number of applications of the CPA that
the neglected charge correlations lead to substantial errors in the calculated
total energies. Several schemes were suggested to remove this drawback. Let us
consider for simplicity only the case of random binary bcc or fcc alloys. The
condition of the overall charge neutrality together with the neglect of higher
multipole moments leads to a vanishing mean-field Madelung contribution VMad,s
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to the one-electron potential (the site index R is omitted). The screened CPA [32]
and the screened impurity model [33] lead to a component-dependent Madelung
term

V Q
Mad,s = − 2 qQ

s d−1
nn , (98)

where dnn denotes the distance between the nearest neighboring sites of the
lattice. This shift of the one-electron potentials follows from an assumption of a
perfect screening of the net charge qQ

s by compensating charges located on the
nearest neighbors. The correction to the total alloy energy per lattice site is then
given by

∆E1 = β
∑
Q

cQ qQ
s V Q

Mad,s , (99)

where the prefactor β equals 1/2 for the screened CPA [32,34] whereas for
the screened impurity model the whole interval 1/2 ≤ β ≤ 1 was considered
[33,35,36]. Another approach employs an idea of neutral atomic spheres [37,38]
where the sphere radii sQ are changed (keeping the average atomic volume fi-
xed) to achieve vanishing net charges (qQ

s = 0) for both alloy components. All of
these schemes improve considerably the calculated total energies for many alloy
systems but a detailed assessment of their validity especially for alloy surfaces
remains yet to be done.

6 Extensions and Applications of the LMTO-CPA

The non-relativistic TB-LMTO-CPA theory of substitutionally disordered al-
loys can be generalized to include properly all relativistic effects based on the
Dirac equation. The relativistic theory in the non-magnetic case represents a
straightforward modification of the non-relativistic counterpart [15,39] whereas
for spin-polarized systems certain theoretical as well as technical problems ap-
pear [15,40]. Nevertheless, many of the theoretical concepts introduced above
remain valid.

The energetics of metallic alloys and their surfaces with applications to orde-
ring and segregation phenomena is usually studied in terms of effective interato-
mic interactions. They can be determined from ab initio electronic structure cal-
culations using either the generalized perturbation method [23] or the Connolly-
Williams inversion scheme [41]. In the context of the LMTO-CPA theory, the
generalized perturbation method was described in [15,42] and reviewed in [43],
while a modification of the Connolly-Williams approach was developed in [44].

Recent applications of the selfconsistent LMTO-CPA method cover a large
area of the modern theory of alloys. The ground-state properties of non-magnetic
bulk random alloys were investigated, e.g., in [33,35,38], while the Fermi surfaces
and the electronic topological transitions were studied in [45]. Existing appli-
cations to magnetic bulk alloys include studies of the local magnetic moments
[40,46], various aspects of the Invar alloys [47,48], the structural stability [49,50],
the ordering tendencies [49,51,52], and the Curie temperatures [43].
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The electronic structure of surfaces of random alloys was investigated, e.g., in
[39,53–55], studies of the surface segregation were published in [42–44,54,56,57],
and calculations of the surface magnetic properties of random alloys were pre-
sented in [58,59].

Two-dimensional random alloys which can be formed at an epitaxial interface
of two different metals represent another field of applicability of the LMTO-CPA
method. The electronic structure of non-magnetic random overlayers on metallic
substrates was calculated, e.g., in [55,60,61] while random magnetic overlayers
on non-magnetic substrates were studied in [46,62,63]. The adlayer core-level
shifts of random overlayers were calculated in [64], the ordering tendencies in
surface non-magnetic alloys were analysed in [65], the interplay of magnetism
and ordering was considered in [51], and the stability of metallic interfaces was
investigated in [66].

The interlayer exchange coupling, encountered in epitaxial magnetic multi-
layers, is another quantity which can be influenced by substitutional disorder
both in the magnetic layers and in the non-magnetic spacer. Applications of
the LMTO-CPA to this problem can be found in the review [67] and references
therein.

The formalism presented in this paper as well as the applications listed above
are heavily based on the ASA. A development of a full-potential version of the
LMTO-CPA is difficult due to the dependence of each LMTO on the occupation
of all lattice sites. This complicated configuration dependence of the LMTO’s
can be removed in the so-called pure-L approximation for the TB-LMTO’s [68]
and the corresponding single-site CPA theory can be then derived. This was
done in [69,70] together with applications to random fcc Li-Al and Ni-Pt bulk
alloys.
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and B. Johansson, Phys. Rev. B 54, 3380 (1996).
50. P. James, I.A. Abrikosov, O. Eriksson, and B. Johansson, in: Properties of Complex

Inorganic Solids, edited by A. Gonis, A. Meike, and P.E.A. Turchi (Plenum Press,
New York, 1997), p. 57.
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Phys. Rev. B 48, 1870 (1993).
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65. J. Kudrnovský, S.K. Bose, and V. Drchal, Phys. Rev. Lett. 69, 308 (1992).
66. A.M.N. Niklasson, I.A. Abrikosov, and B. Johansson, Phys. Rev. B 58, 3613 (1998).
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Abstract. A formulation of the order-N locally self-consistent Green’s function, LSGF,
method in conjunction with the linear muffin-tin orbital (LMTO) basis set is discussed.
The method is particularly suitable for calculating the electronic structure of systems
with an arbitrary distribution of atoms of different kinds on an underlying crystal
lattice. We show that in the framework of the tight-binding representation it can be
generalized to systems without ideal three-dimensional symmetry of the underlying
lattice, like, for instance, alloys with local lattice relaxations or surface alloys. We also
show that multipole corrections to the atomic sphere approximation can be easily in-
corporated into the formalism. Thus, the method represents a powerful tool for studing
different problems within alloy theory.

1 Introduction

Recent research in solid state physics has shown a number of encouraging results
for the investigation of physical properties of metallic alloys. In particular, the
computational schemes which allow one to treat ordered, as well as random al-
loys, their surfaces and interfaces have been developed and applied with a great
success. This has led to a much deepened understanding of the behavior of ther-
modynamic and magnetic properties, structural and phase stabilities, impurity,
surface and segregation energies through the transition metal series [1–5]. On
the other hand, first-principles investigations are still limited to certain ideal sy-
stems, like, for instance, completely ordered or completely random alloys, while
for materials and problems of technological importance these studies are quite
rare. A possible improvement of this circumstance consists in the development of
more efficient computational schemes, for example, methods that scale linearly
with increasing number of atoms in the system (order-N methods), thereby al-
lowing a study of more realistic systems.

The problem is schematically illustrated in Fig. 1. In the framework of density
functional theory (DFT) [6] our purpose is to solve the Kohn-Sham equations [7]
for an infinite system of atoms. This set of effective one-electron equations is con-
ventionally solved with a particular choice of basis functions. However, such an
approach relies on the Bloch theorem, and thus requires ideal three-dimensional
periodicity of the system at hand. If this is not the case, the periodicity is usually
imposed artificially by considering only a finite part of the original system, the
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so called supercell, subject to periodic boundary conditions (Fig. 1a). This al-
lows one to construct a Hamiltonian matrix which upon Fourier transformation
to reciprocal k-space has a dimension proportional to the number of atoms N
in the supercell. But due to the famous O(N3) scaling problem (i.e. the com-
putational time increases as N3 with the number of atoms N in the supercell)
the size of the cell is often limited by the computer power rather than by the
physical problem itself. On the other hand, to account for short range order ef-
fects in alloys [8,9] or to calculate interaction energies between point defects in a
metal [10] one needs supercells with more than a hundred of atoms. For such big
supercells conventional approaches are not at all efficient, and scaling properties
of the computational technique must be improved.

(b) (c)(a)

Fig. 1. Three ways to calculate electronic structure of infinite system composed of
chemically nonequivalent atoms (filled and open circles) with an arbitrary degree of
disorder. (a) In the framework of the supercell method one chooses some part of the
original system (indicated by a full line), and repeats it periodically. (b) Conventional
O(N) methods are based on the direct solution of the electronic structure problem for
a finite part of the original system (dashed line), the local interaction zone, centered at
all the sites of this system. (c) Within the LSGF method the boundary conditions for
the multiple scattering problem inside a LIZ are substantially improved by embedding
the LIZ into a self-consistent effective medium (gray circles). As a result the size the
LIZ is greatly reduced (dotted line)

Within the last decade considerable attention has been devoted to the deve-
lopment of so-called O(N) methods. Most of them are based on the principle of
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nearsightedness [11], illustrated in Fig. 1b. Similar to the supercell method, one
considers a finite subsystem of the original system, the so called local interaction
zone (LIZ) [12,13]. But rather than introducing periodic boundary conditions,
one solves the electronic structure problem for the particular LIZ, and then pro-
ceeds to the next LIZ, thus dividing the N -atom problem into N more or less
independent problems for each LIZ. Such a procedure can be partly justified by
the experience gained in the application of real-space cluster methods in elec-
tronic structure calculations that shows that for a large cluster the properties of
an atom deep inside the cluster are very close to those given by band structure
methods. Also, it guarantees linear scaling of the computational efforts with N .

Several O(N) computational techniques differ from each other mainly by the
methods of solving the electronic structure problem for the LIZ. For example,
in Refs. [14–18] this is done by employing localized orbitals, Refs. [19–23] take
advantages of the density matrix formulation, in Refs. [24,25] tigh-binding (TB)
representation is used, while the techniques presented in Refs. [12,13,26,27] are
based on a Green’s function approach. However, if there are M atoms in the
LIZ, then the computational effort required for an exact solution of the elec-
tronic structure problem inside a particular LIZ scales as M3. Thus the total
computational time scales as M3N . One can see from Fig. 2 that there is a cer-
tain minimum number of atoms Ñ for which the O(N) methods become more
efficient than conventional O(N3) methods. Thus, the problem with O(N) me-
thods is not only to achieve the linear scaling of the computational efforts with
increasing number of atoms, but also to minimize the size of the LIZ. Unfortuna-
tely, applications of the above mentioned linear scaling methods are very limited
due to the fact that the size of their LIZ must in general be chosen quite large to
give reliable description of the electronic properties, especially for metals [12,13].

The origin of this drawback can be understood as follows. From an illustra-
tion in Fig. 1b one can see that all the information about the system beyond the
LIZ is totally neglected. Therefore, one needs to keep too many atoms directly
in the LIZ in order not to loose essential physical information about the original
system. Thus, there is a question if one can make the central atom of the LIZ
more nearsighted. In Refs. [8,28] we have suggested that one can do this if one
keeps at least some information about the system beyond the truncation region
in the form of an effective medium (Fig. 1c). And, of course, the more informa-
tion is kept, the better the convergence will be with respect to the size of the
LIZ. Therefore, we have suggested to choose the effective medium that describes
properties of the original system on average as accurate as possible. It is also
clear that the symmetry of the effective medium may be much higher than the
symmetry of the system under consideration. In Refs. [8,28] we have demon-
strated how the computational effort of O(N) calculations may be considerably
reduced by embedding the LIZ in this effective medium (see Fig. 1c). Such an
embedding may be established by means of the Dyson equation connecting the
desired Green’s function to the Green’s function of the reference system.

In the present paper we first review the main ideas of the locally self-consistent
Green’s function (LSGF) technique proposed by Abrikosov et al. [8,28]. We then
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Fig. 2. Schematic representation of computational efforts required to solving the el-
ectronic structure problem by a conventional O(N3) method (full line), as well as by
O(N) methods with different number of atoms, M (dashed line) and 2M (long-dashed
line), in the local interaction zone

discuss some resent developments, in particular, multipole corrections to the
atomic sphere approximation (ASA) [29,30] for the one-electron potential. We
will next show how the tight-binding representation of the linear muffin-tin orbi-
tal method [31–35] can be incorporated in our Green’s function technique. This
will allow us to formulate general equations for systems without ideal three-
dimensional symmetry of the underlying lattice, like, for instance, alloys with
local lattice relaxations or surface alloys. Applications of the LSGF method to
several problems of solid state physics will also be briefly discussed.

2 Locally Self-Consistent Green’s Function Method

2.1 Assumptions and Definitions

We will formulate the locally self-consistent Greens function method in the fra-
mework of the density functional theory and the local spin density approximation
(LSDA) [6,7] in conjunction with a linear muffin-tin orbitals basis in the atomic
sphere approximation of Andersen [31–35] including multipole correction terms
[29,30], ASA+M. In this section we will consider the problem of calculating the
electronic structure of a system of N atoms illustrated in Fig. 1. Though this
is not necessary, we assume that the original system is represented by a super-
cell subjected to periodic boundary conditions. This assumption allows us to
calculate easily the long-ranged electrostatic contributions to the one-electron
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potential and energy, and to construct appropriate LIZ for atoms close to the
boundary of the supercell. We allow for an arbitrary distribution of the atoms
that may be of different types on the sites of the underlying crystal lattice. Ho-
wever, in this section we do not allow these lattice sites to deviate from their
ideal positions, i.e. we neglect the so-called local relaxation effects. This problem
will be considered in Sec. 3.2.

We will assign to each site of the supercell a corresponding atomic sphere (AS)
centered at radius-vector R. Inside each AS we will define the electron density
ρR(r) and one-electron potential vR(r). Also the potential function P α

Rl(z)

P α
Rl(z) =

z − CRl

(z − CRl)(γRl − αl) + ∆Rl
(1)

for an arbitrary (complex) energy z and angular-momentum quantum number
l may be assigned to each site. It is expressed by means of the band center C,
bandwidth ∆, and the γ LMTO potential parameters calculated at an arbitrary
energy ενRl in the energy range of interest [33]. Index α denotes the LMTO
representation, and in the following discussion it will be used only when relevant.
The so-called KKR-ASA Green’s function matrix g is defined like

[P(z) − S(k)]g(k, z) = 1, (2)

whereP,S and g are (RL,R′L′) matrices, L is the combined angular-momentum
quantum numbers (l, m), and the structure constant matrix S contains all the
information about the crystal structure. The real space KKR-ASA Green’s fun-
ction matrix gRL,R′L′(z) is obtained from g(k) by integration over the Brillouin
zone

gRL,R′L′(z) = (VBZ)−1
∫

BZ

dk eik·(T−T′)gUL,U′L′(k, z), (3)

where VBZ is the volume of the Brillouin zone, U is a basis vector of the unit
cell. It is connected to the lattice site R by a translation T, i.e., R = U+T. The
on-site element gRL,RL′(z) is a key quantity which determines both the electron
density and the density of states at the R-th site. Therefore, our purpose is to
calculate these matrix elements for all the sites of the supercell. In a conventional
Green’s function technique this requires an inversion of Eq. (2) at each k-point in
the Brillouin zone and for each energy point z. This is essentially the operation
that results in O(N3) scaling of the problem. In the following we will show how
this problem can be solved without a direct inversion of Eq. (2) in the framework
of the LSGF method.

2.2 Concept of Local Self-Consistency and Effective Medium

The concept of local self-consistency is based on the suggestion that the electron
density and the density of states on a particular atom within a large condensed
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system may be obtained with sufficient accuracy by considering only the electro-
nic multiple scattering processes in a finite spatial region centered at that atom.
This concept has been applied by by Nicholson et al. [12,13] in the framework of
the locally self-consistent multiple scattering (LSMS) method. Within this me-
thod each atom of a system is surrounded by few shells of nearest neighbors (see
Fig. 1b), the local interaction zone, and the multiple scattering problem is sol-
ved in the real space for each LIZ independently of the other LIZs. The method
was proven to have essentially O(N) scaling properties with increasing supercell
size. Nevertheless, it turns out that the minimal size of the LIZ should be about
100 atoms and even more to provide the accuracy of order 0.1 mRy/atom for
the total energy. It is quite clear that the reliable description of the central site
scattering properties will be achieved only when the size of the LIZ is so large,
that an atom at this site becomes completely insensitive to what is happening
beyond the LIZ. In particular, if one adds an extra atom at the LIZ’s boundary,
this should have no effect on the central site.

The concept of local self-consistency has been further developed by Abrikosov
et al. [8,28] in the locally self-consistent Green’s function method (LSGF), where
the concept of an effective medium has been combined together with the LIZ
concept. This resulted in the development of an efficient O(N) technique. The
combination of these two concepts can be most easily illustrated by the example
of a substitutional alloy with an arbitrary degree of short and long range order.

In choosing the effective medium we tried to satisfy the following main cri-
teria, namely its scattering properties as viewed by the central atom of the LIZ
must be as close as possible to those of the original system at the shortest pos-
sible distance. Additionally, it has to be as simple (i.e. symmetric) as possible.
In the case of the above mentioned substitutional alloy it is clear that a very
good representation of the real system beyond the LIZ would be a completely
random alloy. In particular, one can expect that the convergence with respect
to the LIZ size will be achieved as soon as the central site becomes insensitive
to the interchange of positions of two atoms at the LIZ’s boundary, in contrast
to a requirement of the complete insensitivity in conventional O(N) schemes.
Also, the random alloy has on the average the highest possible symmetry, and
this will allow us to perform at least partly calculations in the reciprocal space
of the effective lattice which in its own turn has a minimal number of atoms in
the unit cell.

Now, there is a question of how to represent mathematically the effective
medium in the form of a completely random alloy. Based on the experience gai-
ned in the study of alloys Abrikosov et al. [8,28] have suggested to do this in
the framework of the multicomponent generalization of the coherent-potential
approximation (CPA). In fact, the CPA effective medium fulfills both the above
mentioned criteria. Despite the fact that the CPA is a very simple single-site
approximation, it has been shown to give density of states for random alloys
in very good agreement with experiment as well as with more accurate calcu-
lations that go beyond the single-site approximation [36–38]. In addition, the
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CPA Green’s function decays, apart from an oscillating factor, exponentially as
R−1e−R/l, where l is the mean free path [2].

However, conventionally the CPA describes scattering property of a binary
alloy in terms of two potentials, for A and B alloy component. In reality situation
is different, and in a N atom system, even though it is composed of just two
chemically inequivalent atoms, A and B, all the local potentials are in general
inequivalent due to the differences in local environments of any site. Therefore,
one must define the effective medium to be used in the embedding of the LIZ as
that given by the CPA for a multicomponent alloy. The number of components at
each sublattice will be equal to the number of equivalent positions in the supercell
formed from the underlying lattice, i.e., in the simplest case of a monoatomic
underlying lattice each atom in the supercell is considered to be a component of
an N -atom alloy. We thereby assume that the atoms are randomly distributed on
their sublattices and neglect the fact that they occupy definite positions in the
system. The difference between different atoms (or alloy components) will enter
through their one-electron potentials. This method has recently been elevated
to an idea of polymorphous CPA [38].

2.3 Computational Algorithm

In this section we will describe in details the complete self-consistent procedure
of the LSGF method within the LMTO basis set as applied to the problem of
calculating the electronic properties of a paramagnetic system of N atoms in a
supercell subjected to periodic boundary conditions, such as illustrated in Fig. 1.
Generalization to systems with collinear magnetic moments is straightforward,
but there also exists a generalization of the method for systems with arbitrary
orientations of local magnetic moments [39].

The principal scheme is similar to any other Green’s function technique
[34,40–43], but there are certain new steps that are specific for the LSGF me-
thod. We start with a guess for the charge density of all the atoms in the system,
calculated as a renormalized atomic density or by means of a conventional CPA
calculation for a random alloy with the same composition as in the supercell.
The first problem is to construct an effective medium (all parameters that cha-
racterize the latter are denoted by a tilde). This means we must determine the
potential function for the effective scatterers P̃ and the effective Green’s function
g̃. Here we remark, that in some cases it turns out to be more efficient to chose
the effective medium in the form of multisublattice alloy. In particular, it has
been demonstrated in Ref. [28] that for a partially ordered Ni(Ni9.375Al90.625)
alloy the convergence with respect to the size of the LIZ is substantially enhan-
ced by substituting the most symmetric bcc effective medium for an effective
medium on B2 underlying lattice with two nonequivalent types of the effective
atoms, one for each nonequivalent sublattice. Thus, one must solve the following
system of coupled single-site equations for the Ũ sites in the unit cell of the
underlying lattice [43,44]
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g̃ŨŨ = (ṼBZ)−1
∫

BZ

dk ([P̃− S̃(k)]−1)ŨŨ

g0
R = g̃ŨŨ + g̃ŨŨ(P̃Ũ − PR)g0

R (4)

g̃ŨŨ = (NŨ)−1
∑
R

g0
R,

where Ũ denotes a particular sublattice of the underlying lattice, R ∈ Ũ, i.e.,
R = Ũ+ T̃, ṼBZ is the volume of the Brillouin zone of the underlying unit cell
and the integration is performed over the corresponding Brillouin zone, S̃ is the
structure constant matrix of the underlying lattice. In Eq. (4) NŨ is a number
of atoms at the corresponding sublattice of the effective lattice, i.e. NŨ = N for
a Bravais lattice, while, for instance, for the B2 lattice NŨ = N/2. Eq. (4) must
be solved for each sublattice of the effective lattice. In practice it is solved by
iterations with an initial guess for the effective potential function in the following
form:

P̃ −1
Ũ

= (NŨ)−1
∑
R∈Ũ

P −1
R (5)

using an efficient procedure described in details in Ref. [28].
As has been specified in Sec. 2.1, the key quantity to be calculated in order

to get access to all the electronic properties of a system is on-site elements of the
Green’s function matrix, gRL,RL′(z). In the framework of the LSGF method we
calculate them using the concept of the local self-consistency, i.e. for each site
of the supercell separately. This site is considered as a central site of a corre-
sponding LIZ embedded in the effective medium constructed by the procedure
described above (Fig 1c). The Green’s function for the LIZ can be found by
solving corresponding Dyson equation

gRR = g̃RR +
M∑

R′=1

g̃RR′(P̃R′ − PR′)gR′R, (6)

where the sum runs over the M atoms in the LIZ around site R. Eq. (6) has to
be solved for all the sites in the original system. Thus, the problem of solving the
Kohn-Sham equations for an N -atom system is decomposed into N linked locally
self-consistent problems for the LIZ associated with each atom in the system.
Note also that in Eq.(6) g̃RR′ is a matrix element of the complete (diagonal,
as well as off-diagonal) Green’s function matrix of the effective medium, and
it is calculated from the corresponding Brilluoin zone integral, Eq. (3), where
U now represents a basis vector of the underlying lattice Ũ. At each iteration
and for any energy point this Green’s function must be calculated only once for
the entire system, and shall not be updated when moving the LIZ from one site
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to another due to the invariance of all the sites of the underlying lattice that
belong to the same sublattice Ũ with respect to a translation T̃. Moreover, due
to the high symmetry of the effective medium calculating integral (3) is not a
time-consuming operation.

We remark that in general gRR′ calculated by the Dyson equation (6) will not
correspond to the one of a real system, especially close to the LIZ boundary. But
the on-site element for the central atom will approach that of the real atom at R
for a sufficiently large LIZ. In this sense gRR will be locally self-consistent. This
also distinguishes a solution of Eq. (6) from a solution of a single-site CPA Eq.
(4), thus justifying our use of different notations for the corresponding on-site
elements of the Green’s function in these equations.

After the on-site elements of the Green’s function have been calculated for
the entire system, i.e. Eq. (6) has been solved for all the sites R, the remaining
procedure is completely similar to any conventional Green’s function technique
[34,40–43]. We proceed by transforming the KKR-ASA Green’s function g into
the Hamiltonian Green’s function G:

Gγ
RL,RL′(z) =

1
z − V α

Rl

δLL′ +

√
Γ α

Rl

z − V α
Rl

gα
RL,RL′(z)

√
Γ α

Rl′

z − V α
Rl′

, (7)

where the LMTO-representation dependent potential parameters V α
Rl, Γ α

Rl are

V α
Rl = CRl − ∆Rl

γRl − αl
(8)

Γ α
Rl =

∆Rl

(γRl − αl)2
.

Then the moments of the state density can be calculated

mq′q′′
RL′L′′ =

1
2πi

∮
dz(z − ενRl′)q

′
Gγ

RL′,RL′′(z)(z − ενRl′′)q
′′

(9)

and using the second-order Taylor expansion of the partial wave, φR,l(ε; r):

φRl(ε; r) ≈ φνRl(r) + (ε − ενRl) φ̇νRl(r) +
1
2
(ε − ενRl)2 φ̈νRl(r), (10)

the valence charge density nv
R(r) in the corresponding atomic spheres can be

found as the one-centre expansion

nv
R(r) = (4π)−1

∑
L

{[φνRl(r)]2m00
RLL + 2[φνRl(r)φ̇νRl(r)]m10

RLL

+ [φ̇νRl(r)φ̇νRl(r) + φνRl(r)φ̈νRl(r)]m20
RLL}. (11)



388 I. A. Abrikosov et al.

In Eq. (9) the contour must enclose the occuped valence states, while φνRl, φ̇νRl,
and φ̈νRl in Eqs. (10) and (11) denote the partial wave and its first and second
energy derivatives, respectively, evaluated at the energy ενRl. An iteration is
completed by solving Poissons equation for the electrostatic potential and adding
the exchange-correlation potential. In addition, in contrast to the conventional
treatment of an alloy problem in the framework of the CPA, adding corrections
to the ASA becomes meaningful within the LSGF scheme. This will be described
in the next section. The entire procedure is then repeated until self-consistency.

2.4 Multipole Corrections to the ASA

A supercell approach allows one to calculate the electrostatic contributions to
the one-electron potential and energy exactly by performing the Madelung sum-
mation, because the atomic sphere charges in that case are calculated explicitly
[12,13,8]. However, in the ASA, the electron charge is usually assumed to have
spherical symmetry inside each atomic sphere. This approximation works quite
well if all the atomic positions have high-symmetry local coordinations. When
the local symmetry is broken, this approximation becomes less appropriate, and
calculations based on the atomic sphere approximation sometimes lead to sub-
stantial errors when calculating physical properties of solids. For example, the
vacancy formation energy is usually overestimated by as much as a factor of 2
[45–47], and the work function is about 50 % higher than experimental values
[29,4].

The problem of Madelung contributions naturally emerges if one divides the
crystal space into atomic or muffin-tin spheres and tries to describe the elec-
trostatic interaction between the interior of a sphere and the rest of the crystal
by adding a certain, constant throughout the sphere, electrostatic shift to the
one-electron potential. However, if one considers, for example, an isolated va-
cancy in a metal matrix, then one sees that vacancy itself has a very symmetrical
local coordination in the case of a cubic or hexagonal crystal structure of the
metal matrix. But the local coordination of its close neighbors is very unsym-
metrical because one atom has been removed to form the vacancy. On each of
the vacancy neighbors a dipole moment of the electron charge should appear as
a result of the fact that atomic density tails penetrate into this atomic sphere
from all of its neighbors except the vacant site. An additional monopole poten-
tial shift on the vacant site must be thus induced by the dipole moments of the
surrounding atoms. It is clear, that this contribution is omitted if the spherical
approximation for the electron density is used.

This simple example illustrates the importance of taking into account mul-
tipole Madelung contributions to the potential and energy when dealing with a
system in which the symmetry of the local configurations is low. Otherwise, the
system can be adequately described by only the monopole Madelung terms. It is,
of course, also important to examine the relative contributions of the multipoles
higher than the dipole, but it is clear that the dipole term is dominant in the
case of a vacancy as well as for surface problems.
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Probably the most consistent way of dealing with this problem would be
in the framework of a full-potential approach. However, as has been shown in
several works [29,4,48,49,30], one can expect to be able to determine an accurate
total energy of a system by still using a spherical potential provided the spherical
approximation to the electron charge density is lifted. The monopole (L = 0)
Madelung contribution to the one-electron potential is then evaluated using the
monopole as well as multipole components of the valence electron charge, QR

L ,
as:

V R
0 =

1
S

∑
R′,L′

MRR′
0L′ QR′

L′ , (12)

where MRR′
LL′ is the multipole Madelung matrix which is equivalent to the con-

ventional (unscreened) LMTO structure constants for the entire supercell, and
S is the average Wigner-Seitz radius in all space.

On the other hand, the total energy is calculated including all possible el-
ectrostatic interactions between the multipole charges (monopole - monopole,
monopole - dipole, dipole - dipole, etc.):

EM =
1
2S

∑
R,L

QR
L

∑
R′,L′

MRR′
LL′ QR′

L′ . (13)

In Eqs. (12) and (13) multipole moments of the charge density are calculated
as integrals over the atomic sphere with the origin taken at R:

QR
L =

√
4π

2l + 1

∫
R

dr Y ∗
L (r̂)

( r

SR

)l

nR(r) − ZRδl,0

=
√
4π

2l + 1

∑
L′,L′′

CL,L′,L′′

∫ SR

0
dr

( r

SR

)l

r2fRL′L′′(r) − ZRδl,0. (14)

Here SR, nR(r) and ZR are the atomic sphere radius, valence (nonspherical)
electron density and valence number, respectively, of the atom at the site R,
YL(r̂) is a real harmonic, and CL,L′,L′′ are real-harmonic Gaunt coefficients.
Radial parts of the valence density, fRL′L′′(r), are obtained using the second-
order Taylor expansion of the partial wave (10) as

fRL′L′′ = φνRl′φνRl′′m
00
RL′L′′ + φνRl′ φ̇νRl′′m

01
RL′L′′

+ φ̇νRl′φνRl′′m
10
RL′L′′ + φ̇νRl′ φ̇νRl′′m

11
RL′L′′ (15)

+
1
2

φνRl′ φ̈νRl′′ m02
RL′L′′ +

1
2

φ̈νRl′φνRl′′ m20
RL′L′′ .

In the last expression, the radial dependence of fRL′L′′(r) and the expansion
coefficients φνRl(r) has been omitted. In Eq. (15) the density of states moments,
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mq′q′′
RL′L′′ , are given by Eq. (9). In this regard we remark that if the angular mo-

mentum cutoff for the Green’s function is equal to lmax, then multipole moments
of the charge density, Eq. (14), have nonzero components up to 2lmax due to the
properties of Gaunt coefficients.

3 Taking Advantages of Tight-Binding LMTO
Representation

All equations presented in Sec. 2 are formulated for a general LMTO represen-
tation α. Indeed, in the case of a bulk alloy without local lattice relaxations
LSGF calculations can be carried out in any representation with the same com-
putational efforts. However, when in addition to a substitutional disorder the
ideal three-dimensional symmetry of an underlying lattice is also broken, a for-
mulation of the method in terms of tight-binding (TB) LMTO basis set can give
one a substantial advantage. Below we will consider two such cases, that is we
will present generalization of the LSGF method to the case of (i) a surface alloy
and (ii) an alloy with local distortions of atomic positions from the sites of ideal
underlying lattice (local lattice relaxations).

3.1 Electronic Properties of Surface Alloys: the LSGF Method

The large interest in theoretical investigations of surfaces of transition metals
and their alloys is motivated by its fundamental scientific value, as well as by
the great practical importance of these systems. The properties of solid surfaces
and interfaces between two metals play an important role in such phenomena
as catalysis, chemisorbtion, adhesion and corrosion, just to mention a few ex-
amples. Recently there has been significant progress in ab initio calculations
of the electronic structure of surfaces of ordered materials using first-principles
techniques. It appears that one may calculate surface related properties such as
surface tension and work function with a high degree of accuracy [29,4]. In this
context, random metallic alloys represent a large class of important materials.
As to now the surface properties of these systems have only been investigated
in a few cases.

Let us consider for simplicity a system of N atoms with an ideal surface, i.e.
without any imperfections, like, for example, relaxation, reconstruction, steps,
etc. (generalization of the method for the latest case is trivial). The system is
schematically illustrated in Fig. 3. In general, there are at least two ways of
solving the electronic structure problem for this system in the framework of the
LSGF method. Firstly, one can use a traditional approach (Fig. 3a), and model
this surface by a supercell or a slab, thus coming back to a three-dimensional
problem that is to be solved by a conventional LSGF method (see Fig. 3b)
described in Sec. 2. Such a computational scheme will, of course, scale linearly
with increasing number of atoms in the supercell, and in principle, it has been
already successfully applied for several systems [28,50]. However, in doing so one
has to construct an effective medium that represents on the average scattering
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properties of the alloy components, as well as takes into account a vacuum region
modeled in the framework of LMTO-ASA method by empty spheres. Giving the
fact that these properties differ considerably from each other, one will expect a
substantial increase of the LIZ size.

At the same time, as has been demonstrated in Ref. [28], one of the advanta-
ges of the LSGF method is the possibility to vary the effective medium to suit a
problem at hand. Thus, in a case of surface alloy the better choice of the latter
will be the one with a layer dependent Green’s function (Fig. 3c). This can be
achieved in the framework of interface Green’s function technique, proposed by
Lambrecht and Andersen [51] and developed by Skriver and Rosengaard [29].
An implementation of this technique in conjunction with the CPA method has
been described by Abrikosov and Skriver [43].

Similar to these techniques, a solution to the problem of calculating the
electronic structure of a surface or an interface is separated into two parts.
First, one must calculate the Green’s function for the ideal bulk crystals on the
both sides of the interface. In the case of a random alloy this has to be done
by means of the LSGF method (Sec. 2) for a supercell which models the bulk
alloy, i.e. without any presence of the surface or the interface. At the second
stage one can construct an appropriate supercell to model a region of the alloy
in the neighborhood of the interface. Note, that due to a local character of the
perturbation induced by the surface or the interface, the size of this supercell
along the direction perpendicular to the interface is not supposed to be too large.
Proper boundary conditions will be ensured by using the bulk potential function
from Eq. (4) for the effective medium outside the surface region obtained at the
first stage. On the contrary, within the scheme illustrated in Fig. 3a and b, the
whole problem must be solved for the same supercell which in this case should
probably be quite large.

Following the main idea behind the LSGF method, we construct an effective
medium for each layer Λ in the neighborhood of a surface as in the case of a
multicomponent two-dimensional alloy:

g̃β

Ω̃Ω̃
(z) = (ÃSBZ)−1

∫
SBZ

dk‖ g̃β

Ω̃Ω̃
(k‖, z)

gβ0
R = g̃β

Ω̃Ω̃
+ g̃β

Ω̃Ω̃
(P̃ β

Ω̃
− P β

R)gβ0
R (16)

g̃β

Ω̃Ω̃
= (NΩ̃)−1

∑
R

gβ0
R ,

where ÃSBZ is the area of the 2D surface Brilouin zone (SBZ), NΩ̃ and P β
R the

number of atoms and the potential function of real atoms, respectively, at the
sites Ω̃ = (Ω̃‖, Ω̃⊥) that belong to the same sublattice of the 2D unit cell of the
underlying surface lattice in the Λ layer (note that there can be more than one
site Ω̃ in the layer Λ), P̃ β

Ω̃
the potential function of an effective scatterer at Ω̃,

R ∈ Ω̃, and β denotes the most localized, tight-binding LMTO-representation
[32,33] which is essential to use in the calculation of the surface Green’s function
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(d)

(a)

(b)

(c)

Fig. 3. Two ways of modeling surface alloy in the framework of the LSGF method.
(a) One may employ a slab or a supercell approach, and repeat a part of the sample,
including empty spheres (thin dotted circles) in all three directions. (b) An effective
medium (gray circles) shall represent on the average scattering properties of real alloy
components (filled and open circles), as well as empty spheres, and the embedding
procedure can be carried out in a conventional manner. (c) By means of the interface
Green’s function technique in conjunction with the LSGF method the surface alloy is
treated in its true semi-infinite geometry, and a layer-dependent effective medium is
introduced. (d) Embedding procedure can be carried out, and the size of the LIZ is
supposed to be smaller than in the case of the slab or the conventional supercell
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g̃β

Ω̃Ω̃
(k‖, z). As usual in the case of surfaces, a good quantum number is k‖ ∈

SBZ, and the dependence of the surface Green’s function on k⊥ is integrated off
by means of the principle layer technique [52]. In doing so one (i) calculates the
ideal Green’s functions for both sides of the interface using the unperturbed bulk
potential functions of effective scatterers obtained for the supercell which models
the bulk alloy, and (ii) solves a set of recurrent equations that glue the two sides
of the interface together and take care of the perturbation of local potentials in
the interface region. Note that this operation scales as O(NΛ), where NΛ is a
number of layers in the interface region.

When the layer dependent effective medium is constructed by Eq. (16), i.e.
P̃ β

Ω̃
is calculated for any sublattice Ω̃ and for all layers Λ in the supercell that

models surface alloy, the embedding procedure has to be carried out in a similar
manner as for the bulk alloy. If we now denote sites of the LIZ as R = (R‖,R⊥),
then the off-diagonal effective medium Green’s function for the LIZ is calculated
as an integral over the SBZ

g̃β
RR′(z) = (ÃSBZ)−1

∫
SBZ

dk‖ eik‖·[(Ω̃‖−Ω̃′
‖)−(R‖−R′

‖)]g̃β

Ω̃Ω̃′(k‖, z), (17)

and the Green’s function for the central site of the LIZ embedded into the effec-
tive medium (Fig. 3d) is obtained by solving Dyson equation (6). The remaining
procedure is analogous to the one presented in Sec. 2.

3.2 Electronic Properties of Alloys with Local Lattice Relaxations

In general, alloys are composed of elements which are not only chemically nonequ-

ivalent, but also have different atomic sizes. As a result this size mismatch causes
interatomic distancies in the alloy to be different, i.e. it causes so-called local
relaxation effects. The system can also be looked upon as one where local posi-
tions of all the atoms are moved from the sites of an ideal periodic underlying
lattice (Fig. 4a). Though the recent systematic study of lattice relaxations aro-
und a single impurity in Cu by Papanikolaou et al. [53] has shown that their
contribution to the impurity solution energy in general is small compared to the
values calculated earlier without lattice relaxations [3], this effect can influence
the results for the density of states and the total energy calculations in some
cases of very large size mismatches [54], and it is important to be able to take
the local relaxations into consideration.

Within the LSGF method in conjunction with the TB-LMTO basis set the
following procedure can be suggested. Firstly, we construct an effective medium
for the undistorted underlying lattice in essentially the same way as has been
described in Sec. 2. Then we embed a LIZ that is composed of an atom at the
particular site and several shells of its nearest neighbors and that also includes
all the relaxations in this effective medium (Fig. 4b). Thus, the Dyson equation
that has to be solved now shall include both, the perturbation due to chemical



394 I. A. Abrikosov et al.

(b)

(a)

Fig. 4. Schematic representation of the LSGF method applied for an alloy with local
lattice relaxations. (a) An original system composed of two chemically nonequivalent
components (filled and open circles) can be looked upon as the system where local
positions of all the atoms are moved from the sites of an ideal periodic underlying
lattice (indicated by thin lines). (b) Effective atoms (gray circles) are placed at the sites
of the undistorted underlying lattice, and the Dyson equation (18) for the LIZ (dotted
line) embedded into this effective medium accounts for two kinds of perturbations, due
to the potential part, as well as due to structural perturbations

disorder, as well as due to the fact that the atomic positions are shifted from
the sites of the underlying lattice. In the framework of the TB-LMTO method
this perturbation can be included in Eq. (6) through the difference between
the real space structure constant matrices for the original system S and for the
underlying lattice S̃ as following

g(z) = [(g̃(z))−1 + (P(z) − P̃(z)) − (S− S̃)]−1, (18)

where bold symbols denotes (RL,R′L′) matrices, and R,R′ ∈ LIZ.
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Note, that the only element needed from a solution of Eq. (18) is again the on-
site element gRL,RL′(z) for the central site of the LIZ. Therefore, the advantages
of the TB-LMTO representation shall show up in full strength here. Not only it
allows one to calculate easily structure constant matrices for the effective and
the original lattices in the real space, but also due to their localized character
the difference between these lattices as it is seen from the central site of the
LIZ vanishes exactly at very short distancies. As has been specified in Sec. 2 the
above criterion is one of the major requirements to the effective medium that
ensures the minimal size of the LIZ. Therefore, though the LIZ size necessary
to carry out calculations for systems with local lattice relaxations will increase
compared to the unrelaxed case, this increase is not supposed to be too large.

4 Summary

The order-N locally self-consistent Green’s function method has been formula-
ted in the framework of the LMTO method in the tight-binding representation.
The atomic sphere approximation has been used, but we also have shown how
multipole corrections to the ASA can be easily incorporated in our formalism.
The LSGF method employs two basic concepts, the local interaction zone con-
cept, that is the multiple scattering problem is solved in real space for each atom
surrounded by few shells of nearest neighbors, and the effective medium concept
that provides appropriate boundary conditions for the multiple scattering pro-
blem by embedding the LIZ into a self-consistent effective medium constructed
in such a way as to describe as close as possible scattering properties of the origi-
nal system beyond the LIZ boundary. The latter concept ensures a minimal size
of the LIZ, and therefore enhances the efficiency of the LSGF method as com-
pared to other O(N) methods. The tight-binding representation of the LMTO
method allows us to present generalization of the method to two important cases,
a surface alloy, and an alloy with local lattice relaxations.

Applications of the LSGF method to several problems of alloy theory have
shown that it is an excellent tool for studing systems with an arbitrary distribu-
tion of atoms on the sites of the underlying crystal lattice. The method allows
one to include directly short range order effects when calculating the electronic
structure and the total energy of random alloys. In particular, mixing energies
of fcc Cu-Zn alloys calculated by the LSGF method for alloys with appropriate
amount of short-range order were found to be in much better agreement with
experiment than those where short-range order was neglected [8]. Moreover, the
LSGF method takes into account all the local environment effects. Thus, it provi-
des one with an atomic scale resolution when analyzing the electronic properties
of materials, for example, spectral properties [37] or local magnetic moments
[55].

The LSGF method gives one the opportunity to calculate the so-called ef-
fective cluster interactions which can be later applied in the framework of a
statistical mechanical technique in order to study phase stabilities of alloys. In
particular, one can extract concentration dependent effective cluster interactions.
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This may be done by calculating the total energies of alloys with different sets of
correlation functions but for some fixed concentrations of the alloy components
and then by mapping these energies onto the corresponding cluster expansion.
Since these calculations are fast one may perform a large number of them and
thereby increase the accuracy of the interaction parameters obtained. The re-
sulting effective cluster interactions will include all contributions to the total
energy. Such calculations have been carried out with a great success by Simak
et al. [9] for a multicomponent Cu2NiZn alloy.

By means of the LSGF method one can also study properties of point defects
and their clusters. In particular, in order to study a realistic metal-vacancy sy-
stem, it is necessary to consider a large supercell in which the vacancies are well
separated. To calculate vacancy-vacancy or vacancy-solute interaction energies
in alloys or to study complex thermal defects in some intermetallics, very large
supercells are necessary, so conventional methods of band structure calculations
become extremely inefficient. Here our O(N) technique has allowed us, for ex-
ample, to perform a systematic study of the vacancy formation energy of the 3d,
4d, and 5d transition and noble metals, and to discuss its variation through a
transition metal series, as well as the effects of crystal and magnetic structure
[30], and the interaction of vacancies with other defects [10].

In conclusion, we find in number of applications and numerical tests that the
LSGF method in conjunction with the TB-LMTO basis set leads to a reliable
description of electronic properties of alloys. In general it yields results in ex-
cellent agreement with those obtained by alternative first-principles techniques,
but becomes more efficient than the latter already for systems that contain 30
to 100 atoms in the unit cell. Thus, the LSGF method is a powerful technique
for solving different problems of materials science theory.
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33. O.K. Andersen, O. Jepsen, and D. Glötzel, in Highlights of Condensed-Matter

Theory , edited by F. Bassani, F. Fumi, and M. P. Tosi (North Holland, New
York, 1985).



398 I. A. Abrikosov et al.

34. O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys. Rev. B 27, 7144 (1983).
35. H. L. Skriver, The LMTO Method (Springer-Verlag, Berlin, 1984).
36. J. S. Faulkner, Prog. Mater. Sci. 27, 1 (1982).
37. I. A. Abrikosov and B. Johansson, Phys. Rev. B 57, 14164 (1998).
38. J. S. Faulkner, N. Y. Moghadam, Y. Wang and G. M. Stocks, Phys. Rev. B 57,

7653 (1998).
39. I. A. Abrikosov and B. Johansson, Philos. Mag. B 78, 481 (1998).
40. R. Podloucky, R. Zeller, and P. H. Dederichs, Phys. Rev. B 22, 5777 (1980); B.

Drittler, M. Weinert, R. Zeller, and P. H. Dederichs, Phys. Rev. B39, 930 (1989).
41. C. Koenig, N. Stefanou, and J. M. Koch, Phys. Rev. B 33, 5307 (1986).
42. D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gyorffy, and G. M. Stocks,

Phys. Rev. Lett. 56, 2088 (1986); D. D. Johnson, D. M. Nicholson, F. J. Pinski,
B. L. Gyorffy, and G. M. Stocks, Phys. Rev. B 41, 9701 (1990).

43. I. A. Abrikosov and H. L. Skriver, Phys. Rev. B 47, 16532 (1993).
44. A. V. Ruban, A. I. Abrikosov, and H. L. Skriver, Phys. Rev. B 51 12958 (1995).
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Sparse Direct Methods: An Introduction

J. A. Scott

Department for Computation and Information, Rutherford Appleton Laboratory,
Chilton, Didcot, Oxon OX11 0RA, England. (J.Scott@rl.ac.uk)

Abstract. The solution of large-scale linear systems lies at the heart of many compu-
tations in science, engineering, industry, and (more recently) finance. In this paper, we
give a brief introduction to direct methods based on Gaussian elimination for the solu-
tion of such systems. We discuss the methods with reference to the sparse direct solvers
that are available in the Harwell Subroutine Library. We briefly consider large sparse
eigenvalue problems and show how the efficient solution of such problems depends upon
the efficient solution of sparse linear systems.

1 Introduction

Sparse matrices arise in very many application areas, including such diverse
fields as structural analysis, chemical engineering, surveying, and economics. A
matrix is sparse if many of its coefficients are zero and there is an advantage
in exploiting the zeros. In this paper, we present a brief introduction to direct
methods for the solution of large sparse linear systems of equations

Ax = b. (1)

We are concerned with methods that are based on Gaussian elimination. That
is, we compute an LU factorization of a permutation of A

PAQ = LU,

where P and Q are permutation matrices and L and U are lower and upper
triangular matrices, respectively. These factors are used to solve the system (1)
through the forward elimination

Ly = Pb

followed by the back substitution

Uz = y.

The required solution x is then the permuted vector x = Qz. When A is sym-
metric positive definite, it is normal to use the Cholesky factorization

PAPT = LLT .

H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 401−415, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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For more general symmetric matrices, the factorization

PAPT = LDLT ,

is more appropriate. For a stable decomposition in the indefinite case, the matrix
D is block diagonal with blocks of order 1 or 2, and L is unit lower triangular.

Several different approaches to Gaussian elimination for sparse matrices have
been developed. They can each be divided into a number of phases:

1. Preordering to exploit structure eg preordering to block triangular form

PAQ =




B11
B21 B22
B31 B32 B33
. . .
BN1 BN2 BN3 ... BNN




so that only the diagonal blocks Bii need to be factorized.
2. Analyse - the sparsity pattern of A is analyzed to produce a suitable ordering

and data structures for efficient factorization.
3. Factorize - the numerical factorization of A is performed.
4. Solve - the factors are used to solve one or more systems (1) using forward

elimination and back substitution.

Some codes combine the analyse and factorize phases so that numerical values
are available when the ordering is being generated. Phase 3 (or the combined
phase 2 and 3) generally requires most computational time. If more than one
matrix with the same sparsity pattern is to be factorized, the analyse phase only
needs to be performed once. Thus in contrast to dense solvers, for sparse solvers,
it is potentially much faster to perform subsequent factorizations.

In the following sections, we introduce three approaches: the general ap-
proach, frontal methods, and multifrontal methods. We illustrate these different
approaches using software from the Harwell Subroutine Library (HSL) [1] and
use numerical examples from a range of scientific and industrial applications. A
useful reference is the book by Duff, Erisman, and Reid [2] and for an extensive
list of references to recent developments in the area, we recommend the review
by Duff [3].

We end this section by noting that the order of a matrix that is considered
large is a function of time depending on both the development of dense and sparse
codes and advances in computer architecture. However, by today’s standards,
A need not be very large for it to be worthwhile to exploit sparsity. This is
illustrated in Table 1 (taken from Duff [4]), in which we compare the performance
of the HSL sparse solver MA48 with that of the dense solver SGESV from LAPACK.
The problems are all from the Harwell-Boeing Sparse Matrix Collection [5]. The
experiments were performed on a single processor of a CRAY Y-MP vector
supercomputer and the timings are given in seconds.
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Table 1. A comparison of timings on the CRAY Y-MP for MA48 and SGESV on Harwell-
Boeing matrices.

Identifier Order Number of MA48 SGESV
entries

FS 680 3 680 2646 0.06 0.96
PORES 2 1224 9613 0.54 4.54
BCSSTK27 1224 56126 2.07 4.55
NNC1374 1374 8606 0.70 6.19
WEST2021 2021 7353 0.21 18.88
ORANI678 2529 90158 1.17 36.37

2 The General Approach

The principal features of the general approach are:

• sparse data structures are used throughout
• numerical and sparsity pivoting are performed at the same time (phases 2
and 3 are combined).

The efficient implementation of techniques for handling sparse data structures
is of crucial importance. The most common sparse data structure and the one
used in most general-purpose codes holds the matrix by rows. All rows are stored
in the same way with the real values and column indices in two arrays with a
one-to-one correspondence between the arrays, so that the real value in position
k, say, is in the column indicated by the entry in position k of the column index
array. A sparse matrix can then be stored as a collection of sparse rows in two
arrays; one integer, the other real, both of length nz, where nz is the number of
entries in A. A third “pointer” array of length n+1 (n is the order of A) is used
to identify the position in the first two arrays of the data structure for each row.

To illustrate this scheme, consider the following 4 × 4 sparse matrix:

A =




6 0 1 0
2 4 0 −1
0 1 0 0
7 0 0 −3




Storing this matrix as a collection of sparse row vectors we have

column index 1 3 2 4 1 2 1 4
value 6. 1. 4. -1. 2. 1. 7. -3.

row pointer 1 3 6 7 9

Note that the column indices within each row need not be held in order. The
advantages of the scheme are that it is a simple and compact method of storing
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the matrix and it is straightforward to access the matrix by rows. A disadvantage
is that it is difficult to insert entries, which is needed in Gaussian elimination
when a multiple of one row (the pivot row) of the matrix is added to the other
(non-pivot) rows with different sparsity patterns.

In general, the matrix factors L and U are denser than A. For efficiency, in
terms of both storage and floating-point operations (flops), it is essential to try
and restrict the amount of “fill-in” (that is, the number of entries in L and U
that correspond to zeros in A). The rows and columns of A need to be ordered
to preserve sparsity. For example, consider the symmetric matrix with sparsity
pattern

A =




x x x x x
x x
x x
x x
x x


 .

Choosing the pivots in order down the diagonal, the Cholesky factorization of A
is LLT , where L has the form

L =




x
x x
x x x
x x x x
x x x x x


 .

Thus all sparsity has been lost. However, reordering the rows of A in reverse
order

PA = Â =




x x
x x
x x
x x

x x x x x


 ,

and L̂ retains the sparsity of Â

L̂ =




x
x
x
x

x x x x x


 .

A simple but effective strategy for maintaining sparsity is due to Marko-
witz [6]. We motivate this strategy by considering the first step of Gaussian
elimination for the matrix A partitioned in the form

A = A(0) =
(
α aT

r

ac A
(0)
R

)
.
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Assuming α is a suitable pivot choice, the first step in the matrix factorization
is

A =
(
1 0
acα

−1 A(1)

) (
α aT

r

0 I

)
,

where

A(1) = A
(0)
R − aca

T
r

α
. (2)

Fill-in occurs when an entry in the rank-one matrix aca
T
r is a zero in A

(0)
R .

Clearly the dominant cost in the update (2) is that of forming the outer product
aca

T
r . This cost is proportional to the product of the number of nonzeros in

ac and the number of nonzeros in aT
r . At each stage of Gaussian elimination,

Markowitz therefore selects as the pivot the nonzero entry of the remaining
reduced submatrix that minimizes this product. That is, a(k)

ij is chosen as the
pivot for the k-th stage to minimize

(r(k)
i − 1)(c(k)

j − 1),

where r(k)
i and c

(k)
j denote, respectively, the number of nonzeros in row i and

column j of A(k) = {a(k)
ij }.

For stability, pivot candidates must also satisfy some numerical criteria. In
particular, assuming row and column interchanges have been performed to bring
the pivot candidate selected by the Markowitz criteria to the diagonal, the pivot
is only acceptable if it satisfies the inequality

|a(k)
kk | ≥ u |a(k)

ik |, i ≥ k,

where u is a preset threshold parameter in the range 0 < u ≤ 1. The choice
u = 1 corresponds to partial pivoting but, in general, this value is too restrictive
and leads to a large number of pivots being rejected and to unnecessary fill-in.
If u is chosen to be too small, instability can result. A common choice is u =
0.1. Experience has shown that this value usually provides a good compromise
between maintaining stability and preserving sparsity.

In the Harwell Subroutine Library, the package MA48 of Duff and Reid [7]
(and its complex counterpart ME48) is a general sparse solver which uses Marko-
witz pivoting. It uses the numerical values in the analyse phase and its default
value for the threshold parameter is 0.1. The code offers a “fast factorization”
for matrices with exactly the same sparsity pattern as one that has already
been factorized. One of the ways in which the code achieves high performance,
particularly on vector or super scalar machines, is by switching to full-matrix
processing and using Level 3 BLAS [8] once the matrix is sufficiently dense. MA48
is frequently used as a benchmark against which new sparse solvers are judged.

The strength of the general approach is that it gives satisfactory perfor-
mance for many matrix structures and is often the method of choice for very
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sparse unstructured problems. Some gains and simplifications are possible if A is
symmetric. In particular, the Markowitz ordering is replaced by minimum degree
ordering. At the kth stage the pivot is chosen to be a(k)

ii , where

r
(k)
i = min

l
r
(k)
l ,

and r
(k)
l is the number of nonzero entries in row l of A(k). If the matrix is

additionally positive definite, numerical pivoting is not needed.

3 Frontal Methods

Frontal methods have their origins in the solution of finite-element problems for
structural analysis, in which the matrix is symmetric and positive definite. The
method can, however, be extended to general unsymmetric systems and need
not be restricted to finite-element applications (see Duff [9]).

To describe the method, we assume that A is a sum of finite-element matrices

A =
m∑

l=1

A[l] (3)

where each element matrix A[l] has nonzeros only in a few rows and columns and
corresponds to the matrix from element l. The main feature of the frontal method
is that the contributions A[l] are assembled one at a time and the construction
of the assembled coefficient matrix A is avoided by interleaving assembly and
elimination operations. An assembly operation is of the form

aij ⇐ aij + a
[l]
ij , (4)

where a[l]
ij is the (i, j)th nonzero entry of the element matrix A[l]. A variable is

fully summed if it is involved in no further sums of the form (4) and is partially
summed if it has appeared in at least one of the elements assembled so far but
is not yet fully summed. The Gaussian elimination operation

aij ⇐ aij − ail[all]−1alj (5)

may be performed as soon as all the terms in the triple product in (5) are fully
summed. At any stage during the assembly and elimination processes, the fully
and partially summed variables are held in a dense matrix, termed the frontal
matrix. Assuming k variables are fully summed, the frontal matrix F can be
partitioned in the form

F =
(
F11 F12
F21 F22

)
,

where F11 is a square matrix of order k. Pivots may be chosen from anywhere
in F11. For symmetric positive-definite systems, they can be taken from the
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diagonal in order but in the unsymmetric case, pivots must be chosen to satisfy
a threshold criteria. Assuming k pivots can be chosen, F11 is factorized as L11U11.
Then F12 and F21 are updated as

F̂21 = F21U
−1
11 and F̂12 = L−1

11 F12

and finally the Schur complement

F̂22 = F22 − F̂21F̂12

is formed. The factors L11 and U11, as well as F̂12 and F̂21, are stored as parts
of L and U , before further elements are assembled with the Schur complement
to form a new frontal matrix.

The power of frontal schemes comes from the following observations:

• since the frontal matrix is held as a dense matrix, dense linear algebra kernels
(in particular, the BLAS) can be used during the numerical factorization,

• the matrix factors need not be held in main memory, which allows large
problems to be solved using only modest amounts of high-speed memory.

There are a number of frontal codes in the Harwell Subroutine Library: MA42
(Duff and Scott [10]) and its complex counterpart ME42 are for general unsym-
metric systems and MA62 (Duff and Scott [11]) is for symmetric positive definite
finite-element problems. Both codes use Level 3 BLAS in the innermost loop
and optionally store the matrix factors in auxiliary storage. High level BLAS
are also used in the solve phase, and this increases the efficiency when the codes
are used to solve for multiple right-hand sides.

On a machine with fast Level 3 BLAS, the performance of the Harwell frontal
solvers can be impressive. This is illustrated in Table 2. Here MA42 is used to
solve a standard finite-element test problem on a single processor of a CRAY

Table 2. Performance (in Mflop/s) of MA42 on a standard test problem running on a
CRAY Y-MP.

Dimension of element grid 16 × 16 32 × 32 48 × 48 64 × 64 96 × 96

Max order frontal matrix 195 355 515 675 995
Total order of problem 5445 21125 47045 83205 186245
Mflop/s 145 208 242 256 272

Y-MP, whose peak performance is 333 Mflop/s and on which the Level 3 BLAS
matrix-matrix multiply routine SGEMM runs at 313 Mflop/s on sufficiently large
matrices. It is important to realize that the Mflop rates given in Table 2 include
all overheads for holding the factors in auxiliary storage.

The performance of frontal methods, in terms of both the number of floating-
point operations and the storage requirements, is dependent upon the order in
which the elements are assembled. Many of the proposed algorithms for element
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ordering are similar to those for profile reduction of assembled matrices (see,
for example, Reid and Scott [12]). Routine MC63 by Scott [13] is a new element
ordering routine in the Harwell Subroutine Library.

For non-element problems, the frontal method proceeds by assembling the
rows of the matrix one at a time. In this case, efficiency depends on the ordering
of the rows. For matrices with a symmetric or almost symmetric sparsity pattern,
a profile reduction algorithm using the sparsity pattern of the Boolean sum of
the patterns of A and AT can be used. For highly unsymmetric problems, new
algorithms for row ordering have recently been introduced by Scott [14], and
implemented as routine MC62 in the Harwell Subroutine Library.

4 Multifrontal Methods

Although high Megaflop rates can be achieved by frontal solvers, there are several
important deficiences with the method:

• for some problems, many more flops are performed than are needed by other
methods

• the factors can be denser than those produced by other methods
• there is little scope for parallelism other than that which can be obtained
within the higher level BLAS.

These problems can be at least partially overcome through the use of more than
one front.

The multiple front approach partitions the underlying “domain” into sub-
domains, performs a frontal decomposition on each subdomain separately and
then factorizes the remaining “interface” variables, perhaps by also using a fron-
tal scheme. The strategy corresponds to a bordered block diagonal ordering of
the matrix and can be nested. With judicious ordering within each subproblem,
the amount of work required can be reduced and, since the factorizations of the
subproblems are independent, there is much scope for parallelism. Preliminary
results presented by Duff and Scott [15] are encouraging.

Multifrontal methods are a further extension of the frontal method. In place
of a small number of frontal matrices corresponding to the number of subdomains
used, many frontal matrices are used. Each is used for one or more pivot steps,
and the resulting Schur complement is summed with other Schur complements
to generate a further frontal matrix. To illustrate this idea, assume A is a sum of
finite-element matrices (3). Assuming the elements are assembled in the natural
order 1,2,..., the frontal method uses the summation

((..((A[1] +A[2]) +A[3]) +A[4]) + ...).

However, there are other ways in which the summation can be performed. One
possible alternative is to sum the elements in pairs, and then sum the pairs in
pairs, and so on

((A[1] +A[2]) + (A[3] +A[4])) + ((A[5] +A[6]) + (A[7] +A[8])) + ...
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A judicious ordering of the summation can reduce the work involved in the facto-
rization and the density of the resulting factors. This added freedom in the way
in which the assemblies are organized gives the multifrontal method an advan-
tage over frontal methods. By using a sparsity ordering technique for symmetric
systems (usually based on minimum degree), the method can be used efficiently
for any matrix whose sparsity pattern is symmetric or almost symmetric. The
restriction to nearly symmetric patterns arises because the initial ordering is
performed using the sparsity pattern of A + AT . The approach can, however,
be used on any system. If the matrix is very unsymmetric (that is for many
entries aij 
= 0 but aji = 0), numerical pivoting in the factorization phase can
significantly perturb the ordering given by the analyse phase. This is much re-
duced if the matrix is permuted to have a zero-free diagonal before the analyse
phase and further gains can sometimes be obtained by permuting entries with
large modulus to the diagonal. For further details, see Duff and Koster [16]. This
enables the multifrontal method to perform well on a wide range of matrices.

As in the frontal method, multifrontal methods use dense matrices in the
innermost loops. There is, however, more data movement than in the frontal
scheme, and the innermost loops are not so dominant.

In the Harwell Subroutine Library, MA41 by Amestoy and Duff [17] is a mul-
tifrontal code for non-element matrices while the MA46 code of Damhaug and
Reid [18] is designed for element problems. For symmetric problems, routines
MA27 and MA47 (and complex versions ME27 and ME47) are available.

Although sparsity pivoting is usually separated from numerical pivoting, a
recent variant of the multifrontal approach due to Davis and Duff [19] combines
the analyse and factorize phases. This approach is implemented as subroutine
MA38 in the Harwell Subroutine Library.

5 A Comparison of Codes

The performance of the codes MA42, MA41, MA48, and MA38 is compared in Table 3.
The timings are in seconds on a Sun ULTRA-1 workstation. MA42 is used with
the row reordering package MC62. The results show that no single code is clearly
better than the others. The choice of code is dependent on the problem being
solved. MA41 generally has the fastest factorize time for problems such as PORES
3, which have a nearly symmetric structure. For problems that are far from
symmetric in structure (for example, LHR14C), MA38 is very competitive, while
MA48 performs well when the matrix is very sparse (problem WEST2021). MA42
has the advantage of requiring much less in-core storage than the other codes
and this reduction in main memory requirement can mean that it is feasible to
solve problems with the frontal code which cannot be solved using the other
codes.

Finally, we remark that the comparative behaviour of the codes in terms
of timings is, to some extent, dependent on the computing environment. In
particular, the performance of MA42 is impressive on vector machines and if out-
of-core storage is used, its performance is significantly affected by the speed
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Table 3. A comparison of HSL codes on unsymmetric assembled problems (Sun
ULTRA-1).

Identifier Order No. of Code Factor Factor ops Storage
entries time (∗106) (Kwords)

In-core Factor

BAYER04 20545 159082 MA42 10.1 123.8 32 2333
MA41 14.9 159.0 2757 1928
MA48 7.8 15.7 1130 926
MA38 11.9 55.7 1557 1138

LHR07C 7337 156508 MA42 8.0 48.7 22 936
MA41 11.2 151.6 2416 1387
MA48 11.8 56.3 1553 1253
MA38 9.1 33.9 1317 936

LHR14C 14270 307858 MA42 17.7 129.1 94 2041
MA41 48.1 315.2 5025 3498
MA48 24.4 88.8 2978 2399
MA38 16.6 63.5 2201 1728

NNC1374 1374 8606 MA42 0.52 5.3 5 137
MA41 0.58 9.2 209 154
MA48 0.63 5.0 155 135
MA38 1.03 5.6 184 129

PORES 3 532 3474 MA42 0.15 0.3 1 19
MA41 0.06 0.2 33 16
MA48 0.08 0.9 26 18
MA38 0.11 0.2 34 20

WEST2021 2021 7353 MA42 0.32 1.32 2 82
MA41 0.19 0.35 104 47
MA48 0.10 0.05 44 25
MA38 0.24 0.06 73 43

of the i/o. It is important to exploit machine characteristics, such as cache, for
efficient implementation. Some experiments using other computing environments
are reported on by Duff and Scott [20].
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6 Computing the Inverse of a Sparse Matrix

Once the LU factors of a matrix have been computed they can be used to solve
for any number of right-hand sides b. Some software, including MA42, allows the
user to input multiple right-hand sides. BLAS 3 routines can then be exploited
in the solve phase and this allows a single call with k > 1 right-hand sides to
be significantly faster than k calls with a single right-hand side (see Duff and
Scott [10]).

An important special case of more than one right-hand side is where the
inverse A−1 is required, since this can be obtained by solving

AX = I

by taking columns of I as successive right-hand side vectors. If a sequence of
problems with the same matrix but different right-hand sides b is to be solved,
it is tempting to calculate the inverse and use it to form the product

x = A−1b. (6)

However, there is almost no occasion when it is appropriate to compute the
inverse in order to solve a linear system. In general, the inverse of a sparse
matrix is dense, whereas the L and U factors are usually sparse, so using the
relation (6) can be many times more expensive than using the relation LUx = b.

There are many applications where only specified entries of the inverse of
A are required. For example, the diagonal entries of A−1 may be needed. Since
solving (6) computes the entries of A−1 a column at a time, the entire lower
triangle of A−1 would have to be computed to obtain all the diagonal entries.
This may be avoided using the algorithm of Erisman and Tinney [21], which
allows advantage to be taken of sparsity. Let Z = A−1 and suppose a sparse
factorization of A

A = LDU

has been computed, where L and U are unit lower and upper triangular matrices,
respectively, and D is diagonal. It can be shown that

Z = D−1L−1 − (I − U)Z

and

Z = U−1D−1 + Z(I − L).

Since (I − L) and (I − U) are strictly lower and upper triangular matrices,
respectively, the following relations hold:

zij = [(I − U)Z]ij , i < j,

zij = [Z(I − L)]ij , i > j,



412 J.A. Scott

zii = d−1
i i+ [(I − U)Z]ii,

and

zii = d−1
i i+ [Z(I − L)]ii.

Using the sparsity of L and U , these formulae provide a means of computing
particular entries of Z from previously computed ones. Further details are given
in the book by Duff, Erisman, and Reid [2].

7 Eigenvalue Problems

Solution methods for large sparse linear systems of equations are important in
eigenvalue calculations. Large-scale generalized eigenvalue problems of the form

Ax = λBx (7)

arise in many application areas, including structural dynamics, quantum chemi-
stry, and computational fluid dynamics. In many cases, only a few eigenvalues are
required (for example, the largest or smallest eigenvalues). Solution techniques
involve iterative methods based on Krylov subspaces. Well-known approaches in-
clude subspace iteration, the Lanczos method and Arnoldi’s method. The book
by Saad [22] provides a useful introduction to numerical methods for large-scale
eigenvalues.

Before applying a Lanczos or Arnoldi method, we transform (7) into a stan-
dard eigenvalue problem of the form

Tx = θx.

Iterative eigensolvers rapidly provide approximations to well-separated extremal
eigenvalues. T should therefore be chosen so that the sought-after eigenvalues
of (A,B) are transformed to well-separated extremal eigenvalues of T that are
easily recoverable from the eigenvalues of T . Additionally, because the iterative
eigensolvers involve matrix-vector products and for large problems, these can
represent the dominant cost, we need to select T so that y = Tv can be computed
efficiently.

A frequently used transformation is the shift-invert transformation

TSI(σ) = (A− σB)−1B.

The scalar σ is the shift or pole. Because eigenvalues close to σ are mapped
away from the origin while those lying far from σ are mapped close to zero,
TSI is useful for computing eigenvalues of (A,B) lying close to σ. Performing
matrix-vector products y = TSIv is equivalent to solving the linear system

(A− σB)y = b, (8)
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where b = Bv. Thus the efficiency of the eigensolver depends on the efficiency
with which linear systems can be solved.

In recent years, a number of software packages have been developed for large-
scale eigenvalue problems, including EB12 and EB13 in the Harwell Subroutine
Library (Duff and Scott [23], Scott [24]) for unsymmetric problems, and the
very general ARPACK package of Lehoucq, Sorensen, and Yang [25]. These
codes use a reverse communication interface so that, each time a matrix-vector
product y = Tv is required, control is returned to the user. This approach
allows the user to exploit the sparsity and structure of the matrix and to take
full advantage of parallelism and/or vectorization. Additionally, the user can
incorporate different preconditioning techniques in a straightforward way. For
shift-invert transformations, if a direct method of solution is used for the linear
system (8), the LU factorization of (A − σB) need be performed only once for
each shift.

8 Brief Summary

We have given a brief introduction to direct methods for solving large sparse
systems of linear equations. Numerical examples have shown that there is no
single method and no single code that is the best for all applications. The size of
problem that can be solved using direct methods is constantly growing with the
development of more sophisticated numerical techniques and advances in compu-
ter architecture. However, direct methods cannot be used for really large systems
(particularly those for which the underlying problem is three-dimensional). In
this case, iterative methods or techniques that combine elements of both direct
and iterative methods will have to be used.

9 Availability of Software

All the codes highlighted in this paper are written in ANSI Fortran 77 and
all except ARPACK are available through the Harwell Subroutine Library. Any-
body interested in using any of the HSL codes should contact the HSL Mana-
ger: Scott Roberts, AEA Technology, Building 477 Harwell, Didcot, Oxfordshire
OX11 0RA, England, tel. +44 (0) 1235 432682, fax +44 (0) 1235 432023, email
Scott.Roberts@aeat.co.uk, who will provide licencing information. Academic li-
cences are available at a nominal cost. Further information may also be found
on the World Wide Web at http://www.dci.clrc.ac.uk/Activity/HSL.

The ARPACK code is in the public domain and may be accessed at
http://www.caam.rice.edu/software/ARPACK/.

There is a limited amount of sparse matrix software that implements di-
rect methods available within the public domain. Some codes can be obtained
through netlib (http://www.netlib.org) and others from the Web pages of
the researcher developing the code. The problem with the latter source is that,
in general, there is no guarantee of quality control or of software maintenance
and user support.
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Further information on sources of software for sparse linear systems may be
found in the recent report of Duff [4].
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Abstract. The basic ingredients of a real-space tight-binding linear-muffin-tin orbital
(RS-TB-LMTO) approach to non-collinear magnetism and to torque-force calculations
of the magnetic anisotropy are described. Applications to face-centered-tetragonal Ni
films epitaxially grown on Cu(100) substrates are presented. The tetragonal distortion
of the films is calculated using an ab-initio local-density technique, and the RS-TB-
LMTO method is used for calculating the magnetic anisotropy in films with up to 7
Ni monolayers. The accuracy of the approach allows for a detailed analysis of second-
and fourth-order anisotropy constants.

1 Introduction

The tight-binding linear muffin-tin orbital method [1] has proven to be a very
efficient technique for investigating the electronic and magnetic properties of
complex materials, both in its reciprocal- and real-space forms. Exemplary ap-
plications include disordered alloys [2,3], metallic glasses [4] and quasicrystalline
alloys [5]. Of particular interest in the study of magnetism are systems where
the magnetically ordered ground state cannot be described as a simple ferro-,
antiferro-, or ferrimagnetic order with all moments aligned parallel or antipar-
allel to the global axis of magnetisation. In disordered systems the competition
between ferro- and antiferromagnetic exchange interactions and/or fluctuating
local anisotropies can lead to the formation of a non-collinear ground-state de-
scribable as a spin-glass, a spero-, speri-, or asperomagnet [6]. Non-collinear
magnetic structures can also arise as a consequence of uncompensated magnetic
interactions in ordered intermetallic compounds. The symmetry criteria for the
formation of non-collinear spin structures have been discussed in Ref. [7].

Techniques for solving the Kohn–Sham equations of local-spin-density theory
for a non-collinear magnet have been implemented in various standard electronic
structure codes: the augmented spherical wave (ASW) method [8], the LMTO
technique [9,10], and empirical tight-binding [11,12]. Applications include the
helical magnetic structures of γ−Fe [9,13] and of YMn2 [14], the non-collinear
magnetism in Mn3Sn [8], in metallic glasses [3], in quasicrystals [15] and in spin-
glasses [2], to cite only a few examples.

The possibility to tilt the magnetic moment at a given site with respect to its
equilibrium orientation opens the way to a calculation of Ising-, or Heisenberg-
type exchange pair interactions, allowing even for a calculation of bilinear and
H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 416−433, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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biquadratic exchange couplings [16,17]. If spin-orbit coupling is included in the
Hamiltonian, the magnetic anisotropy energy (MAE) can be calculated by a ma-
gnetic torque-force approach [18–20]. In both cases, the RS-TB-LMTO provides
sufficient convergence whereas k-space calculations converge only when extre-
mely fine grids are used for Brillouin-zone intergations [21,22]. In addition, they
have the potential to make the underlying physical mechanism more transparent
and to allow the investigation of even very complex systems.

In the present paper we first briefly review the fundamentals of the non-
collinear spin-polarised RS-TB-LMTO technique and describe its application to
the calculation of the magnetocrystalline anisotropy and to the exchange cou-
pling constants. In the second part we present detailed investigations of the
magnetic properties of the fcc Ni films epitaxially grown on Cu(001) surfaces.
The Ni/Cu(001) system is unique because of the re-entrant character of the
perpendicular magnetic anisotropy: with increasing film thickness, the magnetic
anisotropy switches from in-plane to perpendicular at a thickness of about 7
monolayers, retaining the orientation of the magnetic moments normal to the
film plane for a thickness of up to 60 rA [23,24]. In ”normal” system the equili-
brium between the spin-orbit driven anisotropy and the shape anisotropy leads
to a single transition from perpendicular to in-plane with an increasing num-
ber of monolayers. It is believed that the re-entrant behaviour of Ni/Cu(001)
films is largely strain-induced, driven by the lattice mismatch between film and
substrate.

2 TB-LMTO Approach and Real-Space Recursion
Formalism

Our approach to the self-consistent electronic-structure calculation is based on
the two-center TB-LMTO Hamiltonian

Hα
ils,i′l′s′ =

[1
2
δii′δll′(cαils + cαi′l′s′) +

√
dα

ilsS
α
il,i′l′

√
dα

i′l′s′

]
δss′ −

− 1
2
δii′δll′∆ilσ

z
ss′ = Hα,para

ils,i′l′s′ +Hα,exch
ils,i′l′s′ , (1)

expressed in terms of the structure constants Sα and the potential parameters cα,
dα which are evaluated in the screened most-localised representation [25]. The
potential parameters depend on the solution of the radial Schrödinger equation
at the energies εν chosen usually at the center of the occupied part of the bands.
Essentially, cα describes the center of gravity of the bands whereas dα measures
the band width. The matrix element given by Eq. (1) refers to the interaction
between atoms i, i′, orbitals l, l′ of the spin s, s′. The Pauli matrices will be
denoted as σx, σy and σz.

The first term in of Eq. (1) describes the non-magnetic part of the band
structure, the second spin-dependent term gives rise to the shifts of the bands
with different spins in the opposite directions. The shift is controlled by the
exchange splitting field
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∆il = cαil↓ − cαil↑ . (2)

Self-consistent calculations for various magnetic systems containing 3d- or
4d-metals reveal that the proportionality relation

∆il = Iilmil , (3)

between the exchange splitting field∆il and the magnetic momentmil is satisfied
very well for d-orbitals [4,26,27]. Therefore the non-selfconsistent studies based
on the TB-LMTO formalism can use a fixed Stoner parameter of I2 = 0.95
eV/µB as a very reasonable approximation.

Till now it was supposed that the magnetic moments are all aligned along
the z axis. The generalization of the presented approach to the treatment of
a non-collinear magnetic order consists in rewriting the exchange part of the
Hamiltonian (1) to a rotation invariant form

Hα,exch
ils,i′l′s′ = −1

2
δii′δll′∆ilσss′ = −1

2
δii′δll′Iil∆ilni.σss′ , (4)

where σ = σx x + σy y + σz z is the vector of the Pauli matrices with x, y,
z the unit vectors spanning a global coordinate space and ni = mi/|mi|. Each
magnetic moment direction defined by polar angles ϕi and ϑi with respect to
the global coordinate system defines the moments’ local coordinate system, in
which the exchange part of the Hamiltonian keeps the form of Eq. (1) but with
σz = σz

i referring to the local coordinate system. Because the paramagnetic part
of the Hamiltonian is constructed in the global coordinate system, the on-site
exchange part must be transformed correspondingly for each atom. Of course, the
opposite procedure of the transformation of the paramagnetic matrix elements,
namely the structure constants into the local bases would be equivalent. Taking
ni = cosϕi sinϑi x + sinϕi sinϑi y + cosϑi z we obtain for the transformed
exchange splitting field on the ith site

−1
2
Iil∆ilniσ = −1

2
Iil∆il

(
cosϑi sinϑi exp (−iϕi)

sinϑi exp (iϕi) − cosϑi

)

= −1
2
Iil∆ilD(ϕi, ϑi)σz

i D
+(ϕi, ϑi) . (5)

D(ϕi, ϑi) is the Wigner s = 1
2 rotation matrix from the local coordination

system to the global one

D(ϕi, ϑi) =


 cos ϑi

2 exp
(
− i
2ϕi

)
− sin ϑi

2 exp
(
− i
2ϕi

)
sin ϑi

2 exp
(
i
2ϕi

)
cos ϑi

2 exp
(
i
2ϕi

)

 . (6)
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The band-structure problem is solved using the real-space recursion method
[28], which is very efficient in combination with the TB-LMTO Hamiltonian.
Therefore complex systems with many degrees of freedom can be treated.

The determination of a non-collinear magnetic structure proceeds as follows.
In the first step the ground state of the collinear magnetic arrangement is found
for the Hamiltonian (1). The potential parameters cα, dα together with the Sto-
ner parameters Ii2 calculated from Eqs. (2) and (3) are used in the construction
of the Hamiltonian for the non-collinear calculation with the exchange part due
to Eq. (5), so that all the procedure is parameter-free. The starting magnetic mo-
ment vectors are distributed randomly or small random transversal components
are added to the magnetic moments resulting from previous collinear calculation.
Partial densities of states are obtained for the x-, y-, z-directions of a moment
in its local basis by choosing as the starting recursion vector the normalized
eigenvector of σx, σy, σz, respectively, for up and down spin directions. The
starting recursion vector is then rotated to the global coordinate system by mul-
tiplying it with D(ϕi, ϑi) from Eq. (6). In general, the new magnetic moments
obtained from the integrated projected densities of states will have transversal
components with respect to the last moment directions. The partial densities
of state along the direction of the magnetic moments are used in the update of
the charge densities, potential parameters and exchange splitting fields at each
step. The process continues in an iterative way until the transversal components
are sufficiently small. The moment rotations are quite slow during the iteration
process, therefore the new orientations are extrapolated from the old and new
directions and besides random noise components are added in order to avoid
running into nearest local minima. In the prediction of the new non-collinear
structure we use a Broyden mixing scheme [29]. For further technical details of
the non-collinear calculations we refer to the papers [10,19,30].

In some cases symmetry restrictions allow only a few special spin arrange-
ments in a system. Then the aim is to find a ground state spin configuration.
This kind of calculations can be done as described above but only the densities of
state projected along the moments are necessary what results in the much faster
calculation. To the group of models with fixed directions of magnetic moments
belongs a determination of the magnetic anisotropy energy.

2.1 Magnetocrystalline Anisotropy

The spin-orbit coupling responsible for the magnetocrystalline anisotropy can be
included into Hamiltonian given by Eq. (1) and Eq. (4) by adding an intra-atomic
term

Hso
ils,i′l′s′ =

1
2
δll′ξils,i′l′s′(E) (σl)ils,i′l′s′ . (7)

The matrix elements 1
2 (σl)ils,i′l′s′ for the d-orbitals in the frame rotated

to the magnetic moment direction can be found in Ref. [31]. The spin-orbit
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Table 1. Spin-orbit coupling parameters in meV for iron, cobalt and nickel calculated
at their experimental lattice constants for d-bands at the Fermi level EF and at the
middle of the occupied parts of the d-bands εν . The results obtained by LSDA exchange-
correlation potentials are compared with those obtained by GGA exchange-correlation
potentials (in parentheses).

ξd↑(EF ) ξd↓(EF ) ξd↑(εν) ξd↓(εν)

Fe 72(72) 56(55) 58(58) 45(45)

Co 94(94) 78(78) 73(74) 63(63)

Ni 109(111) 103(103) 91(88) 84(84)

parameters ξils,i′l′s′(E) are assumed to be non-negligible only between the d-
orbitals centered on the same site and they are given in Ry units [32] as

ξils,i′ls′(E) =
2
c2
δii′δll′

∫
φils(E, r)

dV (r)
dr

φi′l′s′(E, r)r2dr . (8)

Here c is the velocity of light, φils(E, r) are the radial partial waves calculated
at the energy E and V (r) is the one-electron interaction potential. The spin-orbit
coupling parameters obtained for iron, cobalt and nickel are shown in Table 1. We
have found that using the Barth-Hedin-Janak local-spin-density approximation
(LSDA) [33,34] and the generalised gradient approximation (GGA) [35] results
for the spin-orbit coupling differing less than 3 %.

Because the spin-orbit coupling constants are much smaller than the band
width for 3d-metals the magnetic anisotropy energy is often evaluated as a diffe-
rence of the sums of the single-particle eigenvalues for the opposite spin directions
treating the spin-orbit term (7) as a perturbation. Even then the calculations
in the k-space are very laborious [21]. Recently it has been demonstrated in
several papers that the real-space approach makes the task of the MAE estima-
tion possible in a non-perturbative fashion from the total ground state energies
[19,20,36]. From practical reasons the inclusion of the spin-orbit coupling in the
non-collinear calculations has the advantage of reducing somewhat the drift of
the overall magnetic moment in the course of the iteration process.

The determination of the preferential magnetisation orientation is of much
interest especially for thin magnetic films and multilayers, which possess a lowe-
red symmetry. However, in the layered systems the other significant contribution,
the magnetostatic shape anisotropy coming from the dipole-dipole interaction,
must be taken into account. Because the shape anisotropy always prefers the
in-plane magnetisation, it is responsible for the changing the orientation of the
magnetisation to the plane at some critical thickness if the spin-orbit contri-
bution to the MAE happens to support a perpendicular anisotropy. When the
thickness of the magnetic film is reduced to a few monolayers, the contributions
from all discrete dipole pairs have to be summed up explicitly
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Edip =
1
c2

∑
<i,j>

1
r3ij

(
mi.mj − 3

mi.rijmj .rij

r2ij

)
, (9)

rather than to resort to the continuum approximation. The sums appearing in
Eq. (9) converge slowly due to the long-range character of the dipole-dipole
interaction but they can be efficiently evaluated in the reciprocal space [37]. For
the cubic sc, bcc and fcc lattices with one atom type per layer the magnetostatic
dipolar energy can be expressed in Ry units as

Edip =
1

c2a3n2
2D

∑
<i,j>

mimj(cosϑi cosϑj −

−1
2
cos (ϕi − ϕj) sinϑi sinϑj)Mij , (10)

where n2D means a number of atoms in one layer, a is the lattice parameter of
the basic cubic cell and the Mij are the dipolar Madelung constants tabulated
in Table 2.

2.2 Exchange coupling constants

The modern spin-polarised band theory gives an accurate description of the ma-
gnetic ground state of most metals and alloys. The magnetic excitations from the
ground state are described in terms of various spin models in which the strength
of a pair interaction is controlled by a magnitude of the exchange coupling.

Recently we have derived expressions for the exchange pair coupling con-
stants and some other related quantities within a real-space approach [16]. The
exchange interaction between the ith and jth moments takes a form

Jij =
∆i∆j

2π
Im

∫ EF

Tr G↑↑
ij (E)G

↓↓
ji (E)dE , (11)

Table 2. Dipolar Madelung constants for the sc, bcc and fcc lattice geometries provided
the basic cubic cell of unit volume, z stands for the interlayer distance.

layer z sc bcc fcc

0 0 9.03362 9.03362 25.55094

1 1
2 — 4.17639 4.04301

2 1 -0.32746 -0.32746 -0.06402

3 3
2 — 0.01238 0.00072

4 2 -0.00055 -0.00055 0.00001
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where ∆ is the exchange splitting field defined by Eq. (2) and the off-site Green’s
functions Gss

ij (E) for the up and down spins are calculated by the recursion
method using the bonding and antibonding combinations for the sites i and j.

The mean-field estimation of the Curie temperature is related to the on-site
exchange coupling Jii via

TC,i =
1

3kB

(
1
2
∆imi − Jii

)
. (12)

The critical temperature TC,i should be viewed as a measure of the local stability
of the magnetic state of the ith atom surrounded by all other atoms.

Another quantity related to the exchange couplings and accessible to the
experimental verification is the spin-wave stiffness constant

Di =
∑

j

Jijr
2
ij . (13)

Here rij are the lattice vectors. The results for the nearest and the next nearest
exchange couplings, the Curie temperature and the stiffness constants for iron,
cobalt and nickel are presented in Table 3. The stiffness constant for iron was
calculated using the first 14 terms, for cobalt and for nickel the first 17 terms in
Eq. (13) were taken into account. The overall agreement with the experimental
data confirms that the spin models formulated originally for systems with loca-
lised magnetic moments can be still be used as a reasonable approximation for
itinerant magnets.

3 Ni/Cu(001) Films

3.1 Atomic Structure

Recently we have witnessed extensive experimental [24,42–47] and theoretical
investigations [48–50] of the Ni films grown on Cu. The Ni/(001)Cu system has
an average lattice mismatch of only 2.6 % favoring a coherent growth of Ni on

Table 3. The nearest and the next nearest exchange couplings J1, J2, the experimental
and the calculated values of Curie temperature TC and the spin-wave stiffness constant
D for iron, cobalt and nickel.

J1 (meV) J2 (meV) TC (K) T exp
C (K) D (meVrA2) Dexp (meVrA2)

Fe (bcc) 16.27 17.29 890 1044a 280 280b

Co (hcp) 25.05 4.11 1000 (β Co) 1388c 1900 580b

Ni (fcc) 4.62 0.20 290 627a 530 555d

a Ref. [38], b Ref. [39], c Ref. [40], d Ref. [41]
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Table 4. The relaxed atomic structures of films with one to seven Ni layers on Cu(001)
from first-principles calculations using the VASP package. The results are compared
with the available experimental data taken at room temperature.

ML 1 2 3 5 7 fct Ni

d12(%) -6.2 -7.0 -11.9 -2.4 -11.4 -3.5 -1.1 -10.8 1.6 -11.0 -11.1

d23(%) 0.2 -1.0 -1.9 -1.0 -7.4 -7.5 -3.9 -5.1 -6.1 -5.8 -6.2

d34(%) 0.5 -0.5 -3.2 0.4 -2.8 -5.8 -5.0 -5.9 -6.9

d45(%) 0.0 6.6 -1.1 -6.8 -5.6 -5.3 -7.0

d56(%) -1.2 -6.0

d67(%) 1.7 -6.2

d78(%) -0.7

d89(%) 3.0

Ref. [45] [45] [45] [46] [46]

Cu in an artificial tetragonally distorted face centered cubic (fct) structure up
to a thickness of about 40 layers above which the growth continues in the fcc
structure.

We investigated first the relaxation of films with one to seven Ni layers on
Cu(001) using the spin-polarised version of the Vienna ab-initio simulation pack-
age (VASP). A detailed description of the VASP and its algorithms can be found
in Ref. [51]. We used the Ceperley and Alder [52] local spin-density functional
and the generalised gradient approximation corrections [35] to the exchange-
correlation energy.

In the first step of the calculation the equilibrium lattice spacing of bulk Cu
was found 3.637 rA, in close agreement with the measured value 3.61 rA. Then
we performed a geometry optimisation of the Cu surface for a slab with 6 layers.
We found a 3.6 % inward relaxation of the surface layer. The predicted relaxation
agrees well with previous ab-initio calculations [53], but is somewhat lower than
the relaxation found in experiment (1.2 % in Ref. [54], 2.4 % in Ref. [55]). The
difference is mostly due to the fact that experiments have been performed at
room temperature. Afterwards the slab was extended on one side with 1 to 7
Ni layers and during the relaxation the lateral lattice spacing was kept at the
Cu bulk value. The inspection of the obtained layer relaxations summarised
in Table 4 reveals clear trends. The surface layer undergoes a strong inward
relaxation, the subsurface layers form a fct lattice with an axial ratio c/a ≈ 0.94.
The relaxation of the bulk fct Ni with the lattice spacing of the Cu bulk leads
to a tetragonal distortion of c/a ≈ 0.93. The rightmost column of Table 4 gives
the structure of the fct Ni surface modeled as a slab of eight layers. Again the
surface layer relaxes inward by a 11 % and the c/a ratio reaches the value 0.93
in the middle of the slab. The estimate within the continuum elasticity theory
of coherent epitaxy-induced structural changes gives c/a ≈ 0.965.
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Table 5. Magnetic moments in relaxed Ni/Cu(001) films with up to seven monolayers
of Ni and of fct Ni in µB . First two interface Cu layers are shown as well. The results
within RS-TB-LMTO approach can be compared with the moments obtained by VASP
package (right columns).

ML 1 2 3 5 7 fct Ni

1 0.12 0.38 0.76 0.75 0.78 0.74 0.77 0.74 0.74 0.73

2 0.00 0.01 0.48 0.52 0.55 0.59 0.58 0.68 0.58 0.68

3 -0.00 -0.01 -0.01 -0.01 0.50 0.47 0.69 0.71 0.68 0.69

4 -0.00 0.00 -0.01 0.00 0.62 0.69 0.64 0.68

5 -0.01 0.00 0.48 0.58 0.68 0.71

6 -0.01 0.01 0.64 0.70

7 -0.01 0.00 0.47 0.58

8 -0.01 -0.01

9 -0.01 -0.01

m̄ 0.12 0.38 0.62 0.63 0.61 0.60 0.63 0.68 0.63 0.68 0.66 0.61

For a single monolayer of Ni/Cu(001), the predicted relaxation is in very good
agreement with low-energy electron-diffraction (LEED) experiments by Kim et
al. [45]. For thicker layers, however, LEED experiments predict only a minimal
inward relaxation (and for yet thicker layers even an outward relaxation) of the
top layer [45,46], at an almost homogeneous tetragonal distortion of the deeper
part of the film. The first-principle calculations, on the other side predict a large
inward relaxation ot the toplayer, but agree with experiment concerning the
tetragonal distortion of the interior of the film.

Recent ab-initio calculations (based on the same technique) of the structu-
ral, electronic and magnetic properties of all low index surfaces of Ni [56] lead
to excellent agreement with experiment. Similar discrepancies between ab-initio
calculation and the experiment as those observed for Ni/Cu(001) have been re-
corded for a number of transition metal surfaces, e.g. Rh(001) and attributed to
an anomalously large perpendicular thermal expansion at the surface [57], limit-
ing the comparison between the room-temperature experiment and the T = 0 K
calculation. It must be left to the future work whether this mechanism also ex-
plains the discrepancy between calculations and experiment for the surface of
Ni/Cu(001) films.

3.2 Magnetic Structure

Using the relaxed atomic structural models discussed in the previous paragraph
we have calculated the magnetic structure and the magnetic anisotropy energy
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Table 6. Spin-orbit coupling parameters for up (left columns) and down (right co-
lumns) partial waves in the relaxed Ni/Cu(001) films with up to seven layers of Ni in
meV. The results for bulk fct Ni are shown in the right-most column.

ML 1 2 3 5 7 fct Ni

1 97.3 95.9 107.2 98.3 106.8 97.7 106.6 97.6 106.5 97.8

2 105.7 102.6 111.6 104.5 111.3 103.8 111.8 104.3

3 107.1 101.0 111.1 102.3 111.4 102.7

4 110.8 102.9 110.7 102.6

5 106.6 100.7 111.3 102.7

6 111.4 103.2

7 106.7 100.7

110.2 101.9

of the Ni/Cu(001) films within the framework of RS-TB-LMTO method. The
real-space recursion technique was applied to cells with 1944 atoms for 1 Ni
monolayer (ML) up to 2560 atoms for 7 Ni ML. Periodic boundary conditions in
the lateral directions and the free boundary conditions normal to the layers were
used. In all cases 20, 20, and 50 recursion levels were used for the s-, p-, d-orbitals,
respectively. Because for the thicker Ni films we obtained a systematic inward
relaxation 6 %, we studied also an infinite fct Ni crystal with the tetragonal
distortion c/a = 0.94.

The layer-resolved and the average magnetic moments are shown in Table
5. As can be expected, the moments at the surface are enhanced (except for the
monolayer) while the moments at the interface drop. This behaviour is observed
independent of the film thickness. Although the total average magnetic moment
approaches the bulk value gradually, even the system with 7 Ni ML is influenced
so strongly by the surface that it is not possible to identify a subsurface region
with steady bulk-like magnetic moments. We also note that the RS-TB-LMTO
calculations agree well with k-space results obtained using VASP.

Due to the relatively low Curie temperature of bulk Ni, the thin films of
Ni can be studied in a wide temperature range as a function of film thickness.
The comprehensive collection of experimental data establishes a clear picture
of magnetic anisotropies in Ni/Cu(001) films [24,43,44]. As the film thickness
increases the magnetisation changes its direction from [100] to [110] between 6
and 7 Ni ML and between 7 and 8 Ni ML it switches continuously to the [001]
direction. The surface and volume contributions to the second-order anisotropy
constants Ks

2 and Kv
2 at zero temperature lie between -100 up to -180 µeV/atom

and 40 up to 75 µeV/atom [44], respectively. The large error bars are due to
the uncertainty in the extrapolation down to zero temperature. For the fourth-
order in-plane and out-of-plane anisotropy constants very small values of K4‖ ≈
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−1 µeV/atom and K4⊥ ≈ 0.2 µeV/atom at T/Tc = 0.8 were reported for 7 Ni
ML [44].

We calculated MAE using the force theorem [21], treating the spin-orbit
coupling as a perturbation. As can be seen from Table 6 the spin-orbit coupling
parameters are only slightly affected by the surface and interface. The layer-
resolved and the total band and dipole-dipole contributions to the MAE are
compiled in Table 7. The contributions of the surface layer to the MAE in all
but monolayer films support an out-of-plane orientation of the magnetisation
and the magnitude of these contributions saturates with the film thickness. The
contribution of the Ni layer at the interface to the Cu substrate also prefers a
perpendicular orientation of the magnetic moments (except for the 2 ML film),
but does not show a systematic variation as the number of layers increases. Quite
surprisingly, we also find a large contribution from the subsurface layer and the
second Ni layer from interface, always preferring an in-plane orientation. The
contributions from the inner layers in films with ≥ 5 ML are always smaller than
the surface and interface contributions. As can be seen from Fig. 1, the 2 ML and
3 ML films show the perpendicular magnetic anisotropy, all other films we have
investigated have an easy axis in the plane. The spin-reorientation transition
between the 3 ML and 5 ML case is driven by the subsurface contribution to the
MAE. For the Ni monolayer we predictK2 = −263 µeV/atom in a fair agreement
with the measured value about −157 µeV/atom [43], previous calculations giving
−94 µeV/atom [48] or −690 µeV/atom [50]. For 2 Ni ML our result K2 =

1 2 3 4 5 6 7
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Fig. 1. Calcutated total magnetic anisotropy energy (circles) and its dipole-dipole
(triangles) and band (squares) contributions for thin Ni films on Cu(001).
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Table 7. Spin-orbit (�Eb, left columns) and dipolar (�Ed, right columns) contribu-
tions to the magnetic anisotropy energy �E = E100 − E001 in the relaxed Ni/Cu(001)
films with up to seven Ni layers. In the last row the estimate of the fourth-order ani-
sotropy constant K4‖ = 4(E110 − E100) is given. The values for the layer-resolved
contributions are in µeV, the averaged values are in µeV/atom.

ML 1 2 3 5 7 fct Ni

1 -263 0 822 -14 1511 -15 2046 -15 2202 -14

2 -369 -7 -2112 -10 -1036 -11 -1049 -11

3 659 -6 355 -14 254 -13

4 -1870 -11 -641 -12

5 168 -6 -316 -13

6 -1330 -12

7 481 -6

�Ēb,d -263 0 227 -10 19 -10 -67 -11 -57 -12 52 0

�(Ēb + Ēd) -263 217 9 -78 -69 52

K4‖ -331 103 24 -17 -6 -3

227 µeV/atom compares very well with K2 = 300 µeV/atom obtained by Wu
and Freeman [50]. We note that the earlier calculations considered unrelaxed fct
or fcc lattices.

For an infinite fct Ni crystal with the tetragonal distortion c/a = 0.94 we
performed a series of calculations for models with different number of atoms.
We obtained almost the same values for the MAE 50, 54, 52 µeV/atom for cells
with 2048, 2916 and 6912 atoms, respectively. These values are only a bit lower
than results 60 µeV [49] and 65 µeV [50] found in the k-space calculations.

The decreasing negative values of the MAE for 5 and 7 ML, together with
the positive value for the infinite fct Ni indicate the possibility of an in-plane to
perpendicular reorientation at a thickness > 7 ML. However, it must be left to
future studies to locate this transition precisely.

The MAE for 2 Ni ML as a function of the tilt angle ϑ taken from the [001]
direction is shown in Fig 2. The dependence on cos2 ϑ is almost linear. Our
attempt to estimate the higher-order term yields a ratio between the fourth-
order and the second-order contribution of 0.01. Here and below we use for the
angular dependence of the MAE the expression [44]

E(ϕ, ϑ) = E0 −K2 cos2 ϑ− 1
2
K4⊥ cos4 ϑ− 1

8
K4‖(3 + cos 4ϕ) sin4 ϑ . (14)

Whether the reorientation of the magnetisation between the in-plane and out-
of-plane orientations happens continuously or abruptly depends on the sign of
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Fig. 2. Band energy difference plotted as a function of ϑ for 2 Ni ML films on Cu(001).
The solid line represents the fit by a parabola.

K4‖. For a stabilisation of a tilted magnetisation (and hence a continuous second
or higher order spin-reorientation transition) a negativeK4‖ is needed. The value
of the fourth-order in-plane anisotropy constant K4‖ can be obtained from the
variation of the MAE with cos 4ϕ. In the last row of Table 7 we show our results
for K4‖. It can be concluded that its thickness dependence is rather complex and
the K4‖ changes sign between 3 and 5 ML. Because these values are typically as
small as few µeV we carried out additional calculations for several intermediate
angles between 0 and 45◦ for 2, 3 and 7 ML films (Fig. 3). From the scatter of
the points around a linear fit versus cos 4ϕ we estimate that the confidence level
in the numerical accuracy of our approach is better than 0.3 µeV/atom in all
cases. Actually, the curves for 2 and 3 ML seem to be modulated systematically.
Despite of the exceedingly small values of the fourth-order MAE the calculated
values are in a reasonable agreement with experimentally observed trends.

In order to understand the influence of the surface and of the tetragonal
distortion of the films on the magnetic anisotropy, a correlation between the
number of holes in the Ni-d band (as observable in near-edge x-ray-absorption
fine-structure (NEXAFS) experiments) and possible anisotropy of the d-band
occupation has been evoked [47]. It has been argued that the number of holes in
the Ni-d band is strongly reduced in the thinnest films, converging to a bulk-like
value at a thickness of about 5 ML. In addition, an in-plane character of the
d-holes irrespective of the thickness has been reported.
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Fig. 3. Band energy difference plotted as a function of ϕ for 2, 3 and 7 Ni ML films
on Cu(001).

In Table 8 we present the number of 3d-holes (unoccupied states) separated
into holes in in-plane orbitals (xy, x2 − y2 for the (001) plane) and out-of-plane
orbitals (yz, zx and 3z2 − r2 for the (001) plane). It is obvious that the 3d-
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Table 8. Numbers of 3d-holes with the in-plane (d‖, left columns) and out-of-plane
(d⊥, right columns) symmetry for Ni atoms in one to seven Ni/Cu(001) films. The ratio
d̄‖/d̄⊥ determines the character of the holes (d̄‖/d̄⊥ > 2/3 means in-plane character,
d̄‖/d̄⊥ < 2/3 means out-of-plane character). The results for bulk fct Ni are shown in
the rightmost column.

ML 1 2 3 5 7 fct Ni

1 0.73 0.62 0.70 0.74 0.67 0.77 0.68 0.76 0.66 0.78

2 0.53 0.88 0.51 0.93 0.51 0.93 0.51 0.93

5 0.59 0.86 0.56 0.92 0.56 0.93

6 0.55 0.92 0.56 0.92

7 0.58 0.85 0.56 0.92

0.54 0.94

0.57 0.86

d̄‖,⊥ 0.73 0.62 0.61 0.81 0.59 0.85 0.58 0.88 0.57 0.90 0.55 0.91

d̄‖ + d̄⊥ 1.35 1.42 1.44 1.45 1.46 1.46

d̄‖/d̄⊥ 1.17 0.76 0.69 0.66 0.63 0.61

band filling is reduced progressively as the film thickness increases and at the
same time the hole character changes from the in-plane to out-of-plane between
4 and 5 Ni ML. The increase of the number of Ni holes with increasing film
thickness compares well with the experimental observations reported in Ref. [47].
In addition we find that the ratio d‖/d⊥ is enhanced in the surface layer over the
value d‖/d⊥ = 2/3 corresponding to an isotropic distribution of the 3d-holes.
Again this agrees with the conclusions derived from the NEXAFS experiments
where the anisotropy has been attributed to the tetragonal distortion of the films.
However, whether this conjecture is correct remains to be verified by reference
calculations for undistorted films. The in-plane character of the 3d-holes means
at the same time that the 3d-electrons have perpendicular character, and this
agrees with the positive contributions of the surface layers to the MAE. In the
deeper layers, the ratio d‖/d⊥ drops below 2/3 and is smallest in the subsurface
layer and the second layer from the interface. Again this correlates well with the
negative contributions to the MAE noted for these layers. Taking the average
over the entire film, we find that the hole character changes between 3 and
5 ML what correlates with the reversal of the MAE. Altogether this analysis
demonstrates that there are important changes in the partial electronic density
of states near the Fermi level as a function of the film thickness whose evident
correlations to the MAE deserve further investigation.
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4 Conclusions

The RS-TB-LMTO formalism described in the first part of the paper, together
with an ab-initio density functional approach to the reconstruction of the films,
has been applied to study the variation of the magnetic anisotropy of Ni/Cu(001)
films with increasing film thickness. The predicted tetragonal distortion of the
deeper layers agrees with experimental observations, but there is disagreement
concerning the obtained inward relaxation of the top layer – this is possibly
related to the confrontation of the T = 0 K calculations with room-temperature
experiments.

For the magnetic anisotropy, we predict a very complex behaviour: the change
from in-plane (1 ML) to perpendicular (2, 3 ML) back to in-plane(5, 7 ML) and
eventually again back to perpendicular for thicker layers (as long as the film re-
mains tetragonally distorted). A detailed analysis reveals a competition between
surface and interface contributions favouring a perpendicular orientation and
subsurface and subinterface contributions favouring in-plane orientation of the
magnetic moments. The correlations to a changing anisotropic population of the
Ni-3d bands have been investigated and found to agree with the interpretation
of NEXAFS experiments.
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Abstract. In this paper some problems experienced during studies combining real
space and tight binding methods are addressed. These methods have been mainly
used for studying the magnetic properties of thin films deposited on substrates and
of multilayers taking into account interfacial imperfections. This paper is illustrated
with calculations of the electronic structure of Fe/Cr multilayered systems which are
particularly interesting. First, the use of d and spd tight binding parameterisations of
the electronic structure for transition metals and its relation to the recursion technique
is discussed. Second, some advantages of using real space cells for studying complex
systems are presented. Finally, the application of these methods for systems presenting
non-collinear magnetism is discussed.

1 Introduction

During the last ten years, the electronic structure of large and complex metallic
systems has been extensively studied mainly due to the enhancement of the
computer facilities. Powerful computers with large memories became available
allowing to reach rapidly self consistency in the band structure calculations for
cells containing up to a few hundred of heavy atoms. One of these kinds of
systems, concerns the metallic multilayers presenting new magnetic properties
like the Interlayer Magnetic Coupling (IMC) or the Giant Magneto Resistance
(GMR) effect particularly interesting for applications. This paper deals with the
use of the real space recursion technique for the study of the magnetic order in
such metallic multilayers.

The multilayered AmBn system built by alternating a m monolayers thick
A layer with a n monolayers thick B layer consists in a long elemental chemical
cell containing, in the simplest case, one non equivalent atom in the in plane
cell and m + n atoms in the growth direction perpendicular to the plane of
the layers. Because these multilayers are periodic in the 3 directions of space,
the band structure is usually calculated in the k space of the reciprocal lattice.
However, since the aim of more complete studies is usually to determine the
magnetic properties for thin overlayers during the growth of the multilayer, to
include interfacial imperfections, to relate the growth mode and the magnetic
behaviour, ... a real space technique is used in order to have the possibility to
calculate the electronic structure of all these situations with the same method.

The aim of this paper is to discuss possible problems and solutions used
H. Dreyssé (Ed.): Workshop 1998, LNP 535, pp. 434−458, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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during various studies of the Fe/Cr multilayered system. A d restricted tight
binding modelling of the band structure has been first used mainly because
it needs less computer time than a full spd description and allows to use an
exact cluster for the recursion technique. More recently, due to physical lacks
in some results, the description has been extended taking the spd hybridisation
into account. However, in order to reduce the computer time, clusters smaller
than the exact one are used for the calculation. In the first section, some possible
choices for the shape of these “inexact” clusters are given and their use for large
cells like the one of multilayers is discussed. In the second section, the advantages
of using real space cells for studying such complex systems are discussed. Finally,
in the last section, the application of these methods for systems presenting non-
collinear magnetism is presented.

2 Tight Binding Parameterisation
and Recursion Technique

2.1 The Recursion Technique

This method, proposed by Haydock and Heine [1–3], is well suited for the deter-
mination of the electronic structure when (i) the Hamiltonian H can be expressed
in a finite basis of localized orbital |i, λ〉 of symmetry λ on the site i (like the
one considered in the next subsection) and (ii) when the knowledge of the Green
function Gi,λ(z) = 〈i, λ|G(z)|i, λ〉 = 〈i, λ|(z − H)−1|i, λ〉 elements is sufficient
for the calculation of the band structure. For example, this method applies to
situations presenting no symmetry like amorphous or disordered systems, aro-
und impurities or structural imperfections.

For each given site and symmetry (i, λ), a new basis |n} is built in order
to have a tridiagonal matrix for the representation of H in this new basis. The
basis |n} is recursively obtained starting from the |i, λ〉 basis function with the
following expressions:

|0} = |i, λ〉
|1} = H|0} − ai,λ

1 |0} (1)

|n + 1} = H|n} − ai,λ
n+1|n} − bi,λ

n |n − 1}.

The sets (ai,λ
n , bi,λ

n ) are called the recursion coefficients. They are easily obtained
by calculations of simple scalar products:

ai,λ
n+1 =

{n|H|n}
{n|n}

bi,λ
n+1 =

{n|H|n + 1}
{n|n} =

{n + 1|n + 1}
{n|n} . (2)

The orthonormalized recursion basis is then obtained by:

|n〉 =
|n}√
{n|n}

(3)
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and the recursion coefficients correspond to:

ai,λ
n+1 = 〈n|H|n〉√
bi,λ
n+1 = 〈n|H|n + 1〉 = 〈n + 1|H|n〉. (4)

The desired tridiagonal matrix representation of H is consequently obtained:

H =




ai,λ
1

√
bi,λ
1 0√

bi,λ
1 ai,λ

2

√
bi,λ
2√

bi,λ
2 ai,λ

3

√
bi,λ
3√

bi,λ
3 ai,λ

4
. . .

0 . . . . . .




. (5)

Since |i, λ〉 = |0〉, the Green function Gi,λ(z) is equal to 〈0|(z − H)−1|0〉 which
corresponds to the first element [(z − H)−1]00 of the inverse matrix of (z −
H). This particular element is easily obtained by considering the determinants
det(z − Hn) = ||z − Hn|| where Hn is the part of the H matrix limited to the
elements {|n〉, |n + 1〉, |n + 2〉, ...} of the recursion basis,

Hn =




ai,λ
n+1

√
bi,λ
n+1 0√

bi,λ
n+1 ai,λ

n+2

√
bi,λ
n+2√

bi,λ
n+2 ai,λ

n+3

√
bi,λ
n+3√

bi,λ
n+3 ai,λ

n+4
. . .

0 . . . . . .




. (6)

The desired Green function is then equal to

Gi,λ(z) =
||z − H1||
||z − H0||

=
||z − H1||

(z − ai,λ
1 )||z − H1|| − bi,λ

1 ||z − H2||

=
1

z − ai,λ
1 − bi,λ

1
||z−H2||
||z−H1||

(7)

corresponding to the continuous fraction expansion

Gi,λ(z) =
1

z − ai,λ
1 − bi,λ

1

z−ai,λ
2 − b

i,λ
2

z−a
i,λ
3 − b

i,λ
3

z−a
i,λ
4 − b

i,λ
4

...

. (8)
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An analytical expression of the Green function is then obtained. However, an
exact determination of Gi,λ(z) requires an infinite number of recursion coeffi-
cients which is never the case in practical calculations. Usually, only a few levels
(N pairs of (an, bn) coefficients) of the continuous fraction are determined and
the missing part of the fraction expansion is replaced by a terminator function
Σi,λ(z). The continuous fraction expansion becomes

Gi,λ(z) =
1

z − ai,λ
1 − bi,λ

1

z−ai,λ
2 − b

i,λ
2

z−a
i,λ
3 − b

i,λ
3

...
z−a

i,λ
N

− b
i,λ
N

Σi,λ(z)

. (9)

For energy bands presenting no gap, the recursion coefficients have asymptotic
limits corresponding to (ai,λ

∞ , bi,λ
∞ ). The most easy way to determine Σi,λ(z) is to

assume that for n > N the recursion coefficients are equal to their asymptotic
values. The terminator function is then equal to:

Σi,λ(z) = z − ai,λ
∞ − bi,λ

∞
z − ai,λ∞ − bi,λ

∞

z−ai,λ
∞ − b

i,λ∞
...

= z − ai,λ
∞ − bi,λ

∞
Σi,λ(z)

. (10)

The solution of this equation gives the square root expression of the terminator
function:

Σi,λ(z) =
z − ai,λ

∞ ±
√

(z − ai,λ∞ )2 − 4bi,λ∞
2

. (11)

The Beer-Pettifor method is used [4] to determine (ai,λ
∞ , bi,λ

∞ ) which is based
on the calculation of the band limits (εmin, εmax) given by (ai,λ

∞ − 2
√
bi,λ∞ , ai,λ

∞ +
2
√
bi,λ∞ ). When the continuous fraction is truncated at the level N , the projected

density of states (PDOS)

ni,λ(ε) = − 1
π

Im(Gi,λ(ε + i0)) (12)

corresponds to a sum of Dirac functions and the band limits can be identified by
the energies of the lowest and highest Dirac functions. This method is extremely
easy to use and, because it needs only to determine the diagonal representation of
relatively small matrices, is also rapid and numerically stable. However, because
the band limits correspond to Dirac functions, using the exact values obtained
by this method gives usually diverging values for the PDOS near the band limits.
Since the band width is underestimated by this method (due to the truncation
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of the continuous fraction), this problem can be nicely solved by enlarging the
calculated band by 1%. One way to check the efficiency of this method for the
determination of the terminator function is to verify that the PDOS are correctly
normalized which is usually the case with an error smaller that 10−5.

For each level of the recursion calculation (2), the hamiltonian H is applied
on the n-th element |n} of the new basis. This adds to the expression of |n+ 1}
all new “neighbours” linked through H of all sites included in the expression of
|n}. In other words, at each level of the recursion calculation, the contribution
of the n-th shell of “neighbours” of the starting site |i, λ〉 is taken into account.
Consequently, the number of sites needed for calculating N exact levels of the
continuous fraction (or N exact pairs of recursion coefficients) is proportional to
N3 [5].

2.2 Tight Binding Hamiltonian

In the Linear Combination of Atomic Orbitals method, the one-electron wave
function |Ψ〉 is expressed as a linear combination of localized atomic orbital |i, λ〉
on site i and spin-symmetry λ:

|Ψ〉 =
∑
i,λ

ci,λ|i, λ〉. (13)

Solving Schroedinger equation becomes the eigen-value problem∑
i,λ

ci,λ(〈j, µ|H|i, λ〉 − ε〈j, µ|i, λ〉) = 0

∑
i,λ

ci,λ(Hλ,µ
i,j − εSλ,µ

i,j ) = 0. (14)

The overlap matrix Sλ,µ
i,j plays an essential role when the atomic orbital can not

be assumed as being orthogonal [6]. In this work, it is assumed that S is equal
to identity Sλ,µ

i,j = δi,jδλ,µ. The hamiltonian can then be directly expressed in
the atomic orbital basis

H =
∑

(i,λ),(j,µ)

|j, µ〉Hλ,µ
i,j 〈i, λ| (15)

which can be split into intrasite and intersite terms

H =
∑
i,λ,µ

|i, µ〉εi,λ,µ〈i, λ| +
∑

(i,λ),(j �=i,µ)

|j, µ〉βλ,µ
i,j 〈i, λ|. (16)

εi,λ,µ are the on-site energy levels and βλ,µ
i,j are the two-center hopping inte-

grals linking sites i and j. In order to reduce the numbers of parameters of the
hamiltonian, the on-site energy levels are assumed to be equal to

εi,λ,µ =
(
ε0i,λ + Ui,l(λ)∆Ni,l(λ) + σλ

Ii,l(λ)Mi,l(λ)

2

)
δλ,µ (17)
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where ε0i,λ, Ui,l(λ), ∆Ni,l(λ) and Ii,l(λ) are respectively the spin independent
energy level reference, the effective Coulomb integral, the charge variation and
the effective Exchange integral of site i, Mi,l(λ) is the local magnetic moment,
l(λ) and σλ being respectively the orbital quantum number (corresponding to s,
p or d states) and the spin of the spin-symmetry λ. The charge variation ∆Ni,l(λ)
and the local magnetic moment Mi,l(λ) are obtained from the PDOS by

∆Ni,l =
∑

λ

δl(λ),l

∫ εF

ni,λ(ε)dε − N0
i,l (18)

where N0
i,l is the bulk l band occupation of site i and

Mi,l =
∑

λ

δl(λ),l

∫ εF

(δσλ,+ni,λ(ε) − δσλ,−ni,λ(ε))dε (19)

Equations (17), (18) and (19) define the self consistency solution. The input
charge variations and magnetic moments allow to calculate the input energy
levels of the hamiltonian for which the output PDOS are determined and in-
tegrated to obtain the output charge variations and magnetic moments. Self
consistency is reached when input and output quantities do not more differ sig-
nificantly.

Usually, four energy levels ε0s, ε
0
p, ε

0
Eg

and ε0T2g
are needed for each site and the

hopping integrals βλ,µ
i,j between each pair of sites are expressed in terms of ten

simple Slater-Koster matrix elements [7] ssσ, spσ, sdσ, ppσ, ppπ, pdσ, pdπ, ddσ,
ddπ and ddδ. It has been shown that a good description of the band structure
can be obtained by limiting the hopping integrals to nearest neighbours pairs of
sites. Various sets of hopping integrals for a given element can be found in the
literature showing that the Slater-Koster matrix elements do not have an unique
value [8].

As an illustration, the density of states (DOS) obtained using the Slater-
Koster parameters deduced by fitting ab initio band structure calculations by
Papaconstantopoulos [9] and those obtained using the TB-LMTO method by
Andersen et al [10] are compared. Fig. 1 shows the DOS obtained for bulk non
magnetic Chromium using these two sets of parameters. The d bands are very
similar for both calculations. For the s and p DOS, if the bottom of the bands for
both calculations are very similar, the DOS differ significantly for higher energies
(larger than 15 eV). Due to the finite band width of tight binding DOS, the band
structure shows non physical structures at high energies for all sets of parame-
ters. However, with tight binding parameters taken from Papaconstantopoulos,
the total band width (W ) is approximately equal to 45 eV whereas with the
second set of parameters W is approximately equal to 25 eV. Since the energy
resolution of the DOS calculated with the recursion method is proportionnal
to W divided by the number of levels, the larger W is, the smaller the energy
resolution of the DOS - for a same number of recursion levels - is. Consequently,
the d DOS - which is the most important for itinerant magnetism properties -
exhibits more fine structures when W is smaller (Fig. 1.b) than for the other
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Fig. 1. s, p, d and total (bold line) densities of states obtained with 24 exact levels of the
continuous fraction for bulk non magnetic Chromium with tight binding parameters
taken from a. Papaconstantopoulos [9] and b. Andersen et al [10]

calculation (Fig. 1.a). It is then essential to choose tight binding parameters
giving the smallest total band width in order to describe more precisely the d
band of transition metals around the Fermi level. This is why, in the following,
the tight binding parameters deduced by Andersen et al [10] are used.

2.3 Clusters for the Recursion Method

It has been shown previously that, for each additional level of the recursion
fraction, the next shell of “neighbours” of the starting site |0} is taken into
account. For the calculation of Nexact recursion levels, we have to built a cluster
containing all sites which will contribute. This exact cluster correspond to all
sites geometrically included in the Nexact-th shell of “neighbours”. The shape of
the exact cluster depends on the crystallographic structure and the cut-off rc of
the hopping integrals ( βλ,µ

i,j = 0 when |ri −rj | > rc) which can be approximated
by a sphere centered on the starting site of radius R = R∗ = Nexact.rc (this
sphere contains the exact cluster). The number of sites Nsite included in the
sphere increases with Nexact like N3

exact and the computation time increases in
the same way. This is why, in most cases smaller clusters are used. However, the
recursion coefficients are affected by the size and the shape of these “inexact”
clusters.

As an illustration, cubic and spherical “inexact” clusters are built and the
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DOS obtained for various cluster sizes are compared. The minimal cubic cluster
containing the exact cluster includes all sites i verifying |xi| < a/2, |yi| < a/2,
|zi| < a/2 with a = a∗ = 2Nexact.rc. “Inexact” clusters are built with a smaller
radius for spheres or a smaller edge for cubes. They are defined by the ratio
ρ = R/R∗ for spherical clusters and ρ = a/a∗ for cubic ones.

Tables 1 and 2 present some characteristics of such “inexact” clusters and
Figs. 2 and 3 display the DOS obtained for two of these examples. These results
(Tables 1 and 2) shows that, as expected, for a similar number of sites in the
clusters, the number of exact levels obtained during the calculation of 24 levels, is
larger for a spherical cluster than for a cubic one. However, the comparison with
the exact calculation (Fig. 1.b) shows that the DOS (Figs. 2 and 3) obtained with
spherical clusters exhibit more non physical peaks (mainly near the bottom of the
DOS) than the others; these peaks are mostly found in the s band. This can be
easily understood because the spherical cluster is a much better approximation
of the exact cluster than a cube and consequently the missing sites correspond
to complete shells whereas, for cubic cluster, they correspond to fractions of
shells. During the calculation of successive levels, the missing sites have a more
progressive impact when cubic clusters are used than with spherical ones for
which the impact occurs abruptly at a given level. In this work, cubic clusters
are used, in order to keep the cubic symmetry of the considered crystals, with
ρ = 0.25 and the DOS are determined with 24 levels in the continuous fraction.
Of course, for other crystals, other “inexact” (non spherical) clusters have to be
consider.

The previous considerations on the cluster shape have been done for bulk

Table 1. Some examples of “inexact” cubic clusters for various ratio ρ. The number
of exact recursion levels and the computation time required for calculating 24 levels
are displayed; the cluster built with ρ = 1 contains the exact cluster needed for the
calculation of 24 exact recursion levels

Linear scale Number Number of Computation

ratio ρ of atoms exact levels time (s)

0.167 855 5 16

0.25 3925 11 38

0.5 29449 24a 238

1 228241 24 6106

a differences between calculated and exact coefficients smaller than 10−10.

situation for which there is only one non equivalent atom in the unit cell. For
cells containing a large number of non equivalent sites, there are two possible
ways to build an “inexact” cluster (Fig. 4): (i) building a set of cubic clusters
centered on each non equivalent site or (ii) building an unique cluster by joining
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Table 2. Some examples of “inexact” spherical clusters for various ratio ρ. The number
of exact recursion levels and the computation time required for calculating 24 levels
are displayed; the cluster built with ρ = 1 contains the exact cluster needed for the
calculation of 24 exact recursion levels

Linear scale Number Number of Computation

ratio ρ of atoms exact levels time (s)

0.195 869 6 16

0.325 3942 15 40

0.635 29627 24a 250

1 115633 24 1556

a differences between calculated and exact coefficients smaller than 10−10.
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Fig. 2. s, p, d and total (bold line) densities of states obtained with 24 levels of the
continuous fraction for bulk non magnetic Chromium for a. a cubic cluster with ρ =
0.167 and b. a spherical cluster with ρ = 0.195; both clusters contain approximately
850 sites
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Fig. 3. s, p, d and total (bold line) densities of states obtained with 24 levels of the
continuous fraction for bulk non magnetic Chromium for a. a cubic cluster with ρ = 0.25
and b. a spherical cluster with ρ = 0.325; both clusters contain approximately 3900
sites

together all clusters built previously. In the first construction, if the unit cell is
longer than a/2, all non equivalent sites are not included in one cluster (Fig. 4.a).
This is problematic when interactions between distant atoms are studied because
one of the atoms is outside the cluster and no direct interactions are taken into
account. The second cluster construction solves this problem by including all
atoms of the unit cell in the cluster. However, this long cluster breaks the cubic
symmetry and the different sites are no more equivalent from the point of view
of the recursion calculation.

In order to have an idea of the fluctuations introduced by such a long cluster,
the bulk antiferromagnetic Chromium situation is considered where all atoms are
equivalent and the length n of the unit cell is artificially increased. With exact
clusters, the result does not depend on the size of the cell. The results obtained
with the “inexact” cluster are presented on Table 3. The local magnetic moment
fluctuates only very slightly (fluctuations from site to site smaller than 10−5 µB)
but it decreases when the unit cell is increased. The on-site energy shows more
pronounced fluctuations from site to site. This shows clearly that the size and
the shape of the cluster play an essential role on the calculated properties when
the unit cell is varied. This is exactly what is usually done for multilayers where
the properties are studied as a function of the layer thickness.
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...     ...

...     ...

a.

b.

Fig. 4. Schematic representa-
tion of the two kind of clu-
sters considered for long unit
cells (dashed line) containing a
large number of non equivalent
sites (filled circles): a. a set of
cubic clusters centered on each
non equivalent site are built, b.
an unique cluster containing all
clusters of the (a) situation is
built

Table 3. Magnetic moment values (M) and energy on the sites i in the unit cell of
length n which are not equivalent in the “inexact” unique cluster relative to the value
obtained with a single atom in the unit cell ∆E(i) = E(i) − E(0, n = 1)

M ∆E(0) ∆E(1) ∆E(2) ...

(µB) (meV) (meV) (meV) ...

n = 1 0.6001 0

n = 2 0.5868 −0.52

n = 3 0.5796 −0.50 −0.69

n = 4 0.5743 −0.68 −0.72

n = 5 0.5731 −0.75 −0.75 −0.75

n = 6 0.5727 −0.76 −0.76 −0.76

n = 11 0.5725 −0.76 −0.76 −0.76 ...

3 Periodic Versus Real Space Cells for Studying Bulk
Magnetic Wall in Cr

The study of the Interlayer Magnetic Couplings (IMC) in FemCrn as a function of
n requires the determination of the total energy from the electronic structure for
various interlayer magnetic arrangement (IMA). Usually, they are restricted to
collinear “ferromagnetic” (F) and “antiferromagnetic” (AF) IMA corresponding
respectively to parallel and antiparallel magnetisation of successive Fe layers.
The IMC are positive (respectively negative) as expected from the occurrence
of a central magnetic defect in the Cr spacer when its thickness corresponds to
an odd (even) number of atomic layers with an AF (F) interlayer arrangement
[11]. For large spacer thickness, this defect becomes a bulk wall in the [001]
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direction in a layered antiferromagnetic crystal. This bulk wall resembles to a
Bloch wall in a ferromagnet separating two domains in the limit of a very strong
anisotropy giving collinear magnetism. In the present case, the bulk wall in a
antiferromagnet corresponds to an antiphase in the layered antiferromagnetic
order. It is easy to build such magnetic configurations using periodic or real
space cells. The periodic cell consists in a Cr1Cr2n−1 superlattice with an AF
interlayer arrangement between the Cr1 layers (Fig. 5.a). The real space cell
consists in a block of 2n − 1 atomic planes on which the wall is induced by a
symmetry relative to the central atomic plane is applied (if this plane has a
zero index, the symmetry corresponds to a magnetic moment on the i-th atomic
plane given by Mi = −M−i), this block being surrounded by blocks for which
the magnetic moments are frozen in a AF bulk-like configuration (Fig. 5.b).

Cr1 Cr1 Cr1Cr2n−1 Cr2n−1

a.

b. Symmetry

Real Space 
Cell

AF frozen 
block

AF frozen 
block

Fig. 5. Schematic representation of the cells used for calculating the bulk magnetic wall
in AF Cr: a. a periodic cell built like a Cr1Cr2n−1 superlattice with an AF interlayer
arrangement, b. a real space cell, containing 2n−1 atomic planes with a symmetry ap-
plied relative to the central atomic plane reversing the magnetic moments, surrounded
by bulk-like frozen AF Cr blocks

The calculation of the magnetic structure using a periodic cell is similar to the
one of FemCrn superlattices: the Fermi level EF is given by the global neutrality
requirement:

∑
i,l

∆Ni,l = 0. (20)

With the real space cell, the situation is more complex because the two semi-
infinite bulk-like frozen AF Cr blocks fix EF to the bulk value. The local energy
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levels εi,l are adjusted requiring the local neutrality:
∑

l

∆Ni,l = 0 (21)

which is a reasonable approximation since the charge variations in transition
metals are usually small.

In this section, the study is restricted to a d description, because for collinear
magnetism, the results obtained with this band structure description are more
than qualitatively correct [12]. The characteristics (extent and energy) of the
AF bulk wall can be determined with both cells using large thickness. In this
paragraph, by increasing n, the two approaches (periodic and real space) are
compared and the minimal value for n, for which the characteristics of the bulk
wall do no more change significantly, is determined. With a periodic cell, the
criterion is to recover the bulk value of the magnetic moment on the Cr1 atomic
plane and, with the real space cell, it is to have a continuous behaviour at the
frontier between the cell and the “frozen” blocks. Fig. 6 presents these values a
function of n. The criterion is more rapidly satisfied with a real space cell than
with a periodic one. Moreover, all magnetic moments are found equal to zero
for periodic cells with n < 9 whereas with this value for n, 90 % of the bulk
moment is reached with the real space cell. This result is not very surprising
since, with the real space cell, the moment at the frontier between the cell and
the “frozen” blocks is strongly maintained by the proximity of a frozen bulk
magnetic moment on one side and only slightly reduced by the magnetic defect
on the other side. For periodic cells, the magnetic defect cancels all moments
in too small cells. This illustrates the efficiency of the use of real space cells for
studying non interacting magnetic configurations.

Using the real space approach, the characteristics of the bulk collinear ma-
gnetic wall in Cr can now be investigated. The insert of Fig. 7 shows the magnetic
moment profile of the wall: its extent is found approximately equal to 40 atomic
planes. This shows that a frustration in the Cr AF order has repercussions over
a large range of planes making this spacer particularly suited for studies with
the present light approach since a large number of Cr atoms are concerned. Fi-
nally, the asymptotic limit of the energy of this wall as a function of n seems to
be γCr = 21 meV per in plane atom (Fig. 7). This energy corresponds to the
energy of the interlayer couplings obtained for large Cr thickness demonstrating
that the coupling energy does not decrease in the collinear restriction when the
spacer thickness increases in such Fe/Cr superlattices.

4 Non-Collinear Magnetism

4.1 Continuous Fraction Expansion
and Non-Collinear Magnetism

All studies presented in the previous section have been realized in the collinear
magnetism framework which saves computer time but represents a strong limi-
tation as compared to experiments. The band structure non-collinear magnetism
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Fig. 6. Magnetic moments values relative to the bulk value on the Cr1 atomic plane
(filled squares) of the Cr1Cr2n−1 periodic cell and on the atomic plane at the frontier
between the cell and the “frozen” blocks (open circles)

allows to include the angular degree of freedom in the self consistent calculation
[13,14]. The magnetic moment is a vector having 3 components Mx, My and
Mz or can be described by its magnitude Mr and two spherical angles θ and φ.
First, the input hamiltonian expression has to be modified in order to take into
account the varying local spin quantization axis ζi (whose direction is given by
the two usual spherical angles θi and φi) for each site i and, second, to determine
the components Mr,i, Mθ,i and Mφ,i of the output magnetic moment.

The hamiltonian of (16) can be rewritten as a sum of a band Hband and an
exchange Hexch hamiltonian where:

Hband =


∑

i,λ

|i, λ〉(ε0i,λ + Ui,l(λ)∆Ni,l(λ))〈i, λ|

+
∑

(i,λ) (j �=i,µ)

|i, λ〉βλ,µ
i,j 〈j, µ|


(

1 0
0 1

)
(22)

and

Hexch =
∑
i,λ

|i, λ〉
−Ii,l(λ)Mi,l(λ)

2
〈i, λ|

(
cosθi e−iφisinθi

eiφisinθi − cosθi

)
. (23)

In these expressions, the spin part of the hamiltonian is represented by the 2×2
matrix which is site dependent only in Hexch. Expression (23) is obtained by ap-
plying a rotation on the σz Pauli matrix in order to align the local quantization
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Fig. 7. Energy (in meV per in plane atom) of the bulk collinear magnetic wall as a
function of the size n of the real space cell. The insert presents the magnetic moments
profile of the wall

axis ζi with the global z axis.
The PDOS on site i for the symmetry λ is obtained with the recursion tech-

nique by setting the starting element |0〉 of the recursion basis equal to |i, λ〉. If
the spin states are represented with the z quantization axis by a two elements
vector, we have:

|i, λ, σλ = +〉 = |i, λ′〉
(

1
0

)
, |i, λ, σλ = −〉 = |i, λ′〉

(
0
1

)
(24)

where λ′ corresponds to the symmetry of the spin symmetry λ. The PDOS on
an arbitrary axis ζ defined by the two spherical angles (Θ,Φ) in the spin space
is obtained by starting with the following initial recursion basis element:

|i, λ, σλ = +〉ζ = |i, λ′〉
(

e−iΦ/2cosΘ
2

e−iiΦ/2sinΘ
2

)

|i, λ, σλ = −〉ζ = |i, λ′〉
(

− eiΦ/2sinΘ
2

eiΦ/2cosΘ
2

)
. (25)

For the determination of Mr,i, Mθ,i and Mφ,i using (19), the majority and mi-
nority spin states densities of states have to be calculated for all sites i and
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symmetries λ′ for ζ = ζi aligned with ur,i (Θ = θi, Φ = φi), for ζ aligned with
uθ,i (Θ = θi +π/2, Φ = φi) and for ζ aligned with uφ,i (Θ = π/2, Φ = φi +π/2).

The first step of the non-collinear study has been done using a d restricted

δθδθ

[001]
direction

Fig. 8. Schematic representation of the slightly non-collinear magnetic configuration
built by tilting the magnetic moment of one over two (001) atomic plane by a small
angle δθ

band structure description. In most cases studied, a discontinuous behaviour
between collinear and slightly non-collinear calculations has been found. For ex-
ample, a slightly non-collinear magnetic configuration by tilting the magnetic
moment directions of half the (001) atomic planes by a small angle δθ is built as
shown by Fig. 8. An antiferromagnetic order like in Cr is obtained for δθ = π.
When δθ is varied starting from zero (ferromagnetic order) and increased pro-
gressively, a nice continuous behaviour should be obtained. This is not obtained
with a d band structure as shown by Fig. 9: the magnetic moment and the
energy show rapid and large variations when δθ is varied from zero to 2◦. On the
contrary, the expected nice behaviour is obtained with a spd band structure as
shown on the same figure. This peculiar behaviour comes from the not spin (+)
and (−) mixed d densities of states in the ferromagnetic collinear configuration
(δθ = 0): the (+) and (−) d densities of states are determined completely inde-
pendently from a calculation where all 2× 2 matrices of (25) are diagonal. Since
it is assumed that the tight binding parameters are not spin dependent, the (+)
and (−) densities of states are the same (they have the same band width W and
are only split in energy by Ii,dMi,d) but they have different band limits (Fig. 10)
and the (+) and (−) spin recursion coefficients ai,λ

n have different ai,λ
∞ limits:

ai,d,+
∞ =

εi,d,+
min + εi,d,+

max

2
= ai,d,−

∞ − Ii,dMi,d

bi,d,+
∞ = bi,d,−

∞ =
(
W

4

)2

(26)

When, the magnetic configuration is non-collinear (even slightly non-collinear),
the (+) and (−) spin states are mixed and the (+) and (−) densities of states
have the same band limits (this is not exactly the case in Fig. 10 because only 8
recursion levels are used but larger band widths are obtained) and the recursion
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magnetic configuration represented in Fig. 8 obtained with a d (filled circles) and with
a spd (open circles) band structure

coefficients (ai,λ
n , bi,λ

n ) should have the same (ai,λ
∞ , bi,λ

∞ ) limit:

ai,d,+
∞ = ai,d,−

∞

bi,d,+
∞ = bi,d,−

∞ =
(
W + Ii,dMi,d

4

)2

. (27)

This explains the large differences in the densities of states represented by Fig. 10.
The most significant changes are mainly noticeable at the top of the majority
spin band where a large peak occurs around one eV even for a very small δθ value.
Such an unphysical behaviour is of course not obtained with an spd hamiltonian.
In this case, the d band which carries the magnetism is hybridised with the s and
p bands having a large band width and consequently the recursion coefficients
limits ai,λ

∞ are nearly insensitive to changes in the magnetic configuration.
For non-collinear studies, a restricted d hamiltonian has to be used very

carefully in order to avoid unphysical results related to numerical problems in
the continuous fraction expansion. All these problems are nicely solved when a
spd hamiltonian is used.

4.2 Angular Dependence of the Interlayer Magnetic Couplings in
Fe/Cr Multilayers

The interlayer magnetic couplings discussed previously can now be studied in
the non-collinear framework and their angular dependence can be investigated.
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This is done by fixing the angle ∆θ between the directions of the inner magnetic
moments of successive ferromagnetic layers during the self-consistent calculation
as displayed by Fig. 11. During the calculation, all not fixed magnetic moments
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Fig. 11. Schematic representation of the magnetic configuration considered for the cal-
culation of the interlayer magnetic couplings. Each vector corresponds to the magnetic
moment of all atoms in the (001) atomic plane which are equivalent

are free to rotate and self-consistency is assumed to be achieved when the output
perpendicular components Mθ,i and Mφ,i on all these sites i are nearly equal to
zero. In this paper, the angular variation is restricted to θ in order to reduce the
computer time but also because it has been checked that all magnetic moments
vectors are in the plane defined by the two fixed magnetic moments.

Because the d states are the most essential for the magnetism, the effective
exchange integrals Is and Ip are usually equal to zero. However, if this is usually
arbitrarily assumed, setting Is = Ip = 0 is now required because we obtain self-
consistency by an iterative way for non-collinear solutions. This comes from the
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expression of the output magnetic moment in terms of s, p and d contributions
in the input u(in)

i,r and u(in)
i,θ spherical basis:

M
(out)
i,r = M

(out)
i,r,s + M

(out)
i,r,p + M

(out)
i,r,d

M
(out)
i,θ = M

(out)
i,θ,s + M

(out)
i,θ,p + M

(out)
i,θ,d

M(out)
i = M

(out)
i,r u(in)

i,r + M
(out)
i,θ u(in)

i,θ . (28)

The magnetic moment used as input for the next iteration is obtained by varying
θi in order to align the local quantization axis with the direction of the output
magnetic moment given by:

M(next in)
i = M

(next in)
i,r u(out)

i,r

= M(out)
i (29)

in the output u(out)
i,r and u(out)

i,θ spherical basis. The s, p and d decomposition of
the next input magnetic moment has to be obtained:

M
(next in)
i,r = M

(next in)
i,r,s + M

(next in)
i,r,p + M

(next in)
i,r,d (30)

which is equal to the magnitude of the output magnetic moment vector
√

(M (out)
i,r,s + M

(out)
i,r,p + M

(out)
i,r,d )2 + (M (out)

i,θ,s + M
(out)
i,θ,p + M

(out)
i,θ,d )2. (31)

However, this s, p and d decomposition is lost when the magnitude of M(out)
i

given by (31) is calculated. If Is = Ip = 0, the results are the same whatever
the values of M (in)

i,r,s and M
(in)
i,r,p are (they do not contribute to the exchange field)

and we have to do the self-consistent calculation only for the d component of
the magnetic moments:

M
(next in)
i,r,d =

√
(M (out)

i,r,d )2 + (M (out)
i,θ,d )2. (32)

The calculation is assumed to be converged when

Maxi{|M (out)
i,r,d − M

(in)
i,r,d|} < ε

Maxi{|M (out)
i,θ,d |} < ε

Maxi{|E(out)
tot − E

(in)
tot |} < ε′ (33)

with ε = 5 × 10−5 µB and ε′ = 10−5 eV.
Fig. 12 presents the interlayer magnetic couplings obtained with the d and

the two spd tight binding parameters as a function of ∆θ for Fe5Cr4 and Fe5Cr5
superlattices. Around the energy minimum, the coupling energy follows a para-
bolic expression C+(∆θ−π)2 for n = 4 and C+(∆θ)2 for n = 5 as predicted by
a phenomenological model [15]. The couplings obtained with the d tight binding
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Fig. 12. Interlayer magnetic couplings ∆E(∆θ)−E(π or 0) obtained with the d (filled
diamonds) and the spd tight binding parameters without (filled circles) and with (filled
squares) a smaller interfacial Id as a function of ∆θ for Fe5Cr4 and Fe5Cr5 superlattices.
The open symbols correspond to the collinear solution

parameters follow the parabolic function over the whole range of ∆θ considered.
The collinear solution obtained for the frustrated configuration does not corre-
spond to the solution obtained for ∆θ = 0 (n = 4) and π (n = 5) and
has a higher energy. This is not very surprising since, with these parameters,
the Fe and Cr magnetic moments do not vary significantly when ∆θ varies and
the local angles θi vary nearly linearly with ∆θ as previously reported [16]. Such
a nearly constant magnetic moment magnitude behaviour corresponds exactly
to the phenomenological model which assumes a helical configuration in a Hei-
senberg model for the antiferromagnetic spacer. The behaviour of the coupling
energies for spd tight binding parameters is completely different: they follow the
parabolic function only over half the range of ∆θ considered. This is particularly
pronounced when the interfacial Cr Id is reduced from 0.96 eV to 0.90 eV (in
order to have a better agreement with ab initio calculations) where the coupling
energies show a maximum at ∆θ = 0 (n = 4) and π (n = 5). Moreover, the
frustrated collinear solution energies are nearly degenerate with the ones of the
corresponding solution obtained with the non-collinear calculations. For exam-
ple, for Fe5Cr4 superlattices, during the decrease of ∆θ from π to 0 (i) the Fe
magnetic moments have a nearly constant magnitude (ii) the magnitude of the
magnetic moments on the Cr atoms decreases strongly when ∆θ reaches 0 and



454 Clara Cornea and Daniel Stoeffler

the magnetic moment of the central Cr atomic planes nearly vanishes, (iii) the
local angles vary linearly when ∆θ decreases from 180◦ down to approximately
60◦; for smaller ∆θ values they vary very rapidly and reach values corresponding
to the frustrated collinear magnetic configuration for ∆θ = 0.

This result explains qualitatively the different behaviours experimentally
obtained for FeCo/Mn superlattices where the parabolic function applies [17]
and for Fe/Cr superlattices where the saturation is better reproduced with a
J1.cos(∆θ) + J2.cos2(∆θ) expression for the coupling energy [18].

4.3 Step Induced Non-Collinear Magnetism

In the previous paragraph, the non-collinear character is induced by the variation
of ∆θ. This is similar, for n = 4, to the situation where an increasing external
magnetic field is applied on the multilayer. Non-collinear magnetic configura-
tions can also be obtained when interfacial imperfections frustrate the natural
magnetic order in the multilayer.

This is illustrated by Fig. 13 for interfacial atomic steps. Because Cr is an-

tCr = 4 APtCr = 5 AP tCr = 5 AP tCr = 4 AP

a. b.

Fig. 13. Schematic representation of the frustration induced by an interfacial atomic
step in an Fe/Cr/Fe sandwich: the Cr thickness tCr variation from 4 to 5 atomic planes
(AP) a. splits the second Fe layer into domains of opposite magnetisation when the
interfacial coupling is preserved or b. induces a 90◦ interlayer arrangement when the
interfacial coupling is partially frustrated

tiferromagnetic, the sign of the interfacial Cr magnetic moment changes from
one (001) atomic plane to the next. If the antiparallel interfacial Fe-Cr coupling
and the Cr antiferromagnetic order (for small Cr thickness) are preserved, the
interlayer magnetic coupling changes from AF to F when the Cr thickness tCr
varies from n = 4 to n = 5 atomic planes at the atomic step (Fig. 13.a).
The second Fe layer is then split into domains of opposite magnetisation and
the domain walls correspond to the steps [19]. However, if we allow non-collinear
magnetism, the second Fe layer can be nearly monodomain if its magnetisation is
perpendicular to the one of the first Fe layer as shown by Fig. 13.b where we have
assumed that only the interfacial Fe-Cr coupling is partially frustrated. This be-
haviour, resulting from the competition between the strong Fe ferromagnetism
and the fluctuations of the interlayer coupling, is usually invoked for explaining
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the occurrence of 90◦ interlayer arrangements but does not result from an int-
rinsic biquadratic interlayer coupling. The aim of this part is to use our method
to determine explicitly the magnetic moment map for such configurations.

For these calculations, all magnetic moments are free to rotate until self-
consistency is achieved. However, because we do not include the spin-orbit cou-
pling, a global rotation can be applied on all moments without changing the so-
lution (there are no privileged directions for the magnetisation). Consequently,
when all moments are effectively free to rotate, the calculation can never con-
verge because a global rotation can occur during each iteration and θi can never
reach its asymptotic value. Fixing arbitrary one moment (on site 0 for example)
and allowing all others to rotate is not the best way to obtain the self-consistent
map: the torque applied on the fixed site by all other sites is usually very large
and a large number of iterations is needed in order to reduce significantly M0,θ,d

and to satisfy the convergence criteria (33) on all sites. A better way is to applied
a global rotation at each iteration in order to keep the moment on a given site
(the site 0) fixed in direction. The value for θi at the next input is then

θ
(next in)
i = θ

(out)
i − θ

(out)
0 (34)

and the angular self-consistency is obtained when

Maxi{|M (out)
i,θ,d − M

(out)
i,r,d .θ

(out)
0 |} < ε. (35)

In this case, the final map is obtained when the magnetic moments do no more
rotate relatively each others even if they continue to rotate globally from one
iteration to the next.

Superlattices with atomic steps at one Fe/Cr interface like in Fig. 13 are mo-
delled by periodic superlattices having a perfectly flat Fe layer separated from
a rough second Fe layer by the Cr spacer with varying thickness. In the cases
considered in this paper, i.e. atomic steps along the [010] direction with flat ter-
races having all the same size of 5 atomic rows, the cell corresponds to the lateral
juxtaposition of 5 Fe5/Cr5/Fe5/Cr5 and 5 Fe5/Cr4/Fe7/Cr4 cells (see Fig. 14).
The total real space cell contains 110 non equivalent sites. The calculations have
been done using the d restricted parameters and the two sets of spd parame-
ters previously used. The magnetic moment map obtained with the d restricted
parameters of Fig. 14 shows clearly that (i) the rough Fe layer is structured in
domains of opposite magnetisation corresponding exactly to the terraces, (ii)
only the Fe atoms at the border line of the domains have a local magnetic mo-
ment perpendicular to the others, and (iii) the Cr spacer layer displays only a
slight non-collinear character. This result does not correspond to the expected
90◦ interlayer arrangement and presents a strongly reduced magnetisation of the
‘rough’ Fe layer. On the contrary, with the spd parameters, the ‘rough’ Fe layer
is (i) only slightly structured in magnetic domains having their magnetisation
making an angle of approximately 80◦ and not 180◦, (ii) the Cr spacer layer pre-
sents a more pronounced non-collinear character, and (iii) the magnetisation of
the ‘rough’ layer, which is only slightly reduced, is preferentially perpendicular
to the one of the flat Fe layer. The two sets of spd parameters used in this work
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Fig. 14. Magnetic moment maps of a Fe5.5Crg.g superlattice having a perfectly flat 5 
atomic planes thick Fe layer (bottom layer) and a rough Fe layer whose thickness varies 
from 5 to 7 atomic planes (top layer) separated by a Cr spacer layer whose thickness 
varies from 4 to 5 atomic planes obtained with the d restricted parameters (upper map) 
and with the spd parameters and the reduced Cr interfacial 4 (lower map). The arrow 
gives the direction of the local magnetic moment whose magnitude is given. The Fe 
sites have a grey arrow head and the Cr sites have a black one and a grey background 
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give nearly the same result. This behaviour corresponds more to the expected
one.

5 Summary

It has been shown that real space methods like the recursion technique allow to
study the magnetic properties of complex systems in a much larger variety of
configurations than most of the other approaches. However, the use of a tight
binding description of the band structure limits the confidence in the results
and it has been exhibited that d restricted and spd parameters give significantly
different results when non-collinear magnetic solutions are allowed. This is why,
more accurate band structure description consistent with a real space approach
are needed and the TB-LMTO method is a possible candidate.
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